A180197 a(n) is 2^(p*q) mod r for the n-th odd number with exactly 3 distinct prime factors p < q < r.
1, 10, 8, 2, 9, 5, 12, 16, 15, 10, 8, 5, 27, 7, 1, 12, 23, 2, 8, 17, 9, 12, 2, 2, 9, 10, 9, 11, 8, 1, 29, 14, 4, 2, 23, 18, 42, 11, 9, 3, 12, 12, 6, 5, 12, 8, 2, 37, 1, 64, 2, 48, 18, 13, 62, 16, 14, 15, 56, 66, 1, 33, 19, 15, 4, 16, 33, 52, 32, 9
Offset: 1
Examples
a(1) = 2^(3*5) mod 7 = 32768 mod 7 = 1 because A046389(1) = 105 = 3*5*7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Haskell
import Data.List (nub) a180197 n = a180197_list !! (n-1) a180197_list = f 1 where f x = if length ps == 3 && nub ps == ps then (2 ^ (ps!!0 * ps!!1) `mod` ps!!2) : f (x+2) else f (x+2) where ps = a027746_row x -- Reinhard Zumkeller, Jan 29 2014
-
Maple
b:= proc(n) option remember; local i, k, l; if n=1 then 3,5,7 else for k from mul(i, i=b(n-1)) +2 by 2 do l:= ifactors(k)[2]; if nops(l) = 3 and add(i[2], i=l) = 3 then break fi od; sort(map(i-> i[1], l))[] fi end: a:= proc(n) option remember; local p, q, r; p,q,r:= b(n); 2 &^ (p*q) mod r end: seq(a(n), n=1..70); # Alois P. Heinz, Jan 17 2011
-
Mathematica
Reap[For[n = 105, n < 2000, n += 2, f = FactorInteger[n] // Transpose; If[f[[2]] == {1, 1, 1}, {p, q, r} = f[[1]]; Sow[Mod[2^(p*q), r]]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2016 *)
Extensions
More terms from Alois P. Heinz, Jan 17 2011
Comments