A180226 a(n) = 4*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
0, 1, 4, 26, 144, 836, 4784, 27496, 157824, 906256, 5203264, 29875616, 171535104, 984896576, 5654937344, 32468715136, 186424233984, 1070384087296, 6145778689024, 35286955629056, 202605609406464, 1163291993916416, 6679224069730304, 38349816218085376
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (4, 10).
Crossrefs
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Mathematica
Join[{a=0,b=1},Table[c=4*b+10*a;a=b;b=c,{n,100}]] LinearRecurrence[{4,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x^2/(1-4*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
Formula
a(n) = ((2+sqrt(14))^(n-1) - (2-sqrt(14))^(n-1))/(2*sqrt(14)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-4*x-10*x^2).