A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (5,10).
Crossrefs
Cf. A001076, A006190, A007482, A015520, A015521, A015523, A015524, A015525, A015528, A015529, A015530, A015531, A015532, A015533, A015534, A015535, A015536, A015537, A015440, A015441, A015443, A015444, A015445, A015447, A030195, A053404, A057087, A057088, A083858, A085939, A090017, A091914, A099012, A180222, A180226.
Programs
-
Magma
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Mathematica
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]] LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
PARI
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
SageMath
A180250= BinaryRecurrenceSequence(5,10,0,1) [A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
Formula
a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023