A180282 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to 2.
2, 6, 18, 50, 140, 392, 1106, 3138, 8952, 25652, 73788, 212940, 616226, 1787606, 5196626, 15134930, 44152808, 128996852, 377379368, 1105350728, 3241135526, 9513228122, 27948336380, 82176836300, 241813226150, 712070156202, 2098240353906, 6186675630818
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1665 (terms n=2..59 from R. H. Hardin)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k)))) end: a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(2): seq(a(n), n=2..30); # Alois P. Heinz, Aug 17 2018
-
PARI
for(n=2,29,print1(sum(j=1,n, binomial(n,j)*binomial(n-j,j)),", ")) \\ Hugo Pfoertner, Dec 13 2019
Formula
a(n) = Sum_{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n).
a(n) = A002426(n) - 1. - Jeppe Stig Nielsen, Dec 13 2019