A180343 a(0)=-4; a(n+1) = 2*a(n) + period 4: repeat 6,1,2,5.
-4, -2, -3, -4, -3, 0, 1, 4, 13, 32, 65, 132, 269, 544, 1089, 2180, 4365, 8736, 17473, 34948, 69901, 139808, 279617, 559236, 1118477, 2236960, 4473921, 8947844, 17895693, 35791392, 71582785, 143165572, 286331149, 572662304, 1145324609, 2290649220, 4581298445
Offset: 0
Examples
a(1) = 2*(-4) + 6 = -2; a(2) = 2*(-2) + 1 = -3; a(3) = 2*(-3) + 2 = -4; a(4) = 2*(-4) + 5 = -3; a(5) = 2*(-3) + 6 = 0.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,1,-2).
Programs
-
Magma
I:=[-4, -2, -3, -4, -3]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-4)-2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
-
Maple
A112030 := proc(n) (2+(-1)^n)*(-1)^floor(n/2) ; end proc: A180343 := proc(n) -2/5*A112030(n+1)-(-1)^n/6-7/2+2^n/15 ; end proc: # R. J. Mathar, Jan 18 2011
-
Mathematica
CoefficientList[Series[(-4+6*x+x^2+2*x^3+9*x^4)/((x-1)*(2*x-1)*(1+x)*(x^2+1)),{x,0,40}],x] (* Vincenzo Librandi, Jun 17 2012 *) LinearRecurrence[{2,0,0,1,-2},{-4,-2,-3,-4,-3},40] (* Harvey P. Dale, Sep 06 2020 *)
Formula
G.f.: ( -4 + 6*x + x^2 + 2*x^3 + 9*x^4 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Jan 18 2011
a(n) = 2*a(n-1) + A131800(n+2).
a(n) = a(n-4) + 2^n.
a(n) = -2*A112030(n+1)/5 - (-1)^n/6 - 7/2 + 2^n/15. - R. J. Mathar, Jan 18 2011
a(n) = 2*a(n-1) + a(n-4) - 2*a(n-5). - Vincenzo Librandi, Jun 17 2012
Comments