cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321172 Triangle read by rows: T(m,n) = number of Hamiltonian cycles on m X n grid of points (m >= 2, 2 <= n <= m).

Original entry on oeis.org

1, 1, 0, 1, 2, 6, 1, 0, 14, 0, 1, 4, 37, 154, 1072, 1, 0, 92, 0, 5320, 0, 1, 8, 236, 1696, 32675, 301384, 4638576, 1, 0, 596, 0, 175294, 0, 49483138, 0, 1, 16, 1517, 18684, 1024028, 17066492, 681728204, 13916993782, 467260456608
Offset: 2

Views

Author

Robert FERREOL, Jan 10 2019

Keywords

Comments

Orientation of the path is not important; you can start going either clockwise or counterclockwise. Paths related by symmetries are considered distinct.
The m X n grid of points when drawn forms a (m-1) X (n-1) rectangle of cells, so m-1 and n-1 are sometimes used as indices instead of m and n (see, e. g., Kreweras' reference below).
These cycles are also called "closed non-intersecting rook's tours" on m X n chess board.

Examples

			T(5,4)=14 is illustrated in the links above.
Table starts:
=================================================================
m\n|  2    3      4       5         6           7            8
---|-------------------------------------------------------------
2  |  1    1      1       1         1           1            1
3  |  1    0      2       0         4           0            8
4  |  1    2      6      14        37          92          236
5  |  1    0     14       0       154           0         1696
6  |  1    4     37     154      1072        5320        32675
7  |  1    0     92       0      5320           0       301384
8  |  1    8    236    1696     32675      301384      4638576
The table is symmetric, so it is completely described by its lower-left half.
		

Crossrefs

Row/column k=4..12 are: (with interspersed zeros for odd k): A006864, A006865, A145401, A145416, A145418, A160149, A180504, A180505, A213813.
Cf. A003763 (bisection of main diagonal), A222200 (subdiagonal), A231829, A270273, A332307.
T(n,2n) gives A333864.

Programs

  • Python
    # Program due to Laurent Jouhet-Reverdy
    def cycle(m, n):
         if (m%2==1 and n%2==1): return 0
         grid = [[0]*n for _ in range(m)]
         grid[0][0] = 1; grid[1][0] = 1
         counter = [0]; stop = m*n-1
         def run(i, j, nb_points):
             for ni, nj in [(i-1, j), (i+1, j), (i, j+1), (i, j-1)] :
                 if  0<=ni<=m-1 and 0<=nj<=n-1 and grid[ni][nj]==0 and (ni,nj)!=(0,1):
                     grid[ni][nj] = 1
                     run(ni, nj, nb_points+1)
                     grid[ni][nj] = 0
                 elif (ni,nj)==(0,1) and nb_points==stop:
                     counter[0] += 1
         run(1, 0, 2)
         return counter[0]
    L=[];n=7#maximum for a time < 1 mn
    for i in range(2,n):
        for j in range(2,i+1):
           L.append(cycle(i,j))
    print(L)

Formula

T(m,n) = T(n,m).
T(2m+1,2n+1) = 0.
T(2n,2n) = A003763(n).
T(n,n+1) = T(n+1,n) = A222200(n).
G. functions , G_m(x)=Sum {n>=0} T(m,n-2)*x^n after Stoyan's link p. 18 :
G_2(x) = 1/(1-x) = 1+x+x^2+...
G_3(x) = 1/(1-2*x^2) = 1+2*x^2+4*x^4+...
G_4(x) = 1/(1-2*x-2*x^2+2*x^3-x^4) = 1+2*x+6*x^2+...
G_5(x) = (1+3*x^2)/(1-11*x^2-2*x^6) = 1+14*x^2+154*x^4+...

Extensions

More terms from Pontus von Brömssen, Feb 15 2021

A180505 Number of Hamiltonian cycles in P_11 X P_2n.

Original entry on oeis.org

1, 3846, 5668692, 7837276902, 10754797724124, 14746957510647992, 20223692320200140940, 27738606105535271640888, 38049128385426605236700966, 52194036750499722755908743018, 71598455565101470929617326988084, 98217523834843365306426848969040826, 134733398926676359394934062807293332148
Offset: 1

Views

Author

Artem M. Karavaev, Sep 09 2010

Keywords

Comments

The linear recurrence for this sequence has order 671. It is too large to be posted here.

Crossrefs

Extensions

a(11)-a(13) from Seiichi Manyama, Mar 29 2020

A222195 Order of linear recurrence for number of Hamiltonian cycles in the graph P_n X P_{2k} (n odd) or P_n X P_k (n even), as a function of k.

Original entry on oeis.org

1, 4, 3, 14, 18, 66, 104, 346, 671, 2086, 4479, 13523
Offset: 3

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Crossrefs

A339962 Number of Hamiltonian circuits within parallelograms of size 10 X n on the triangular lattice.

Original entry on oeis.org

1, 18980, 8782833, 4190083085, 2848083212818, 1738936046774850, 1033232532941136255, 621423541447699842468, 373334515946952014204102, 223802065032649969887333948, 134170413630013820290109500226, 80436114451156297907062202392494, 48216986287603185632341666866663007
Offset: 2

Views

Author

Seiichi Manyama, Dec 25 2020

Keywords

Crossrefs

Row 10 of A339849.
Cf. A180504.
Showing 1-4 of 4 results.