cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339849 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian circuits within parallelograms of size n X k on the triangular lattice.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 44, 80, 44, 1, 1, 148, 549, 549, 148, 1, 1, 498, 3851, 7104, 3851, 498, 1, 1, 1676, 26499, 104100, 104100, 26499, 1676, 1, 1, 5640, 183521, 1475286, 3292184, 1475286, 183521, 5640, 1, 1, 18980, 1269684, 20842802, 100766213, 100766213, 20842802, 1269684, 18980, 1
Offset: 2

Views

Author

Seiichi Manyama, Dec 19 2020

Keywords

Examples

			Square array T(n,k) begins:
  1,   1,     1,       1,         1,          1, ...
  1,   4,    13,      44,       148,        498, ...
  1,  13,    80,     549,      3851,      26499, ...
  1,  44,   549,    7104,    104100,    1475286, ...
  1, 148,  3851,  104100,   3292184,  100766213, ...
  1, 498, 26499, 1475286, 100766213, 6523266332, ...
		

Crossrefs

Rows and columns 3..10 give A339850, A339851, A339852, A338970, A339622, A339960, A339961, A339962.
Main diagonal gives A339854.
Cf. A339190.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    print([A339849(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).
Showing 1-1 of 1 results.