cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A339190 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) Hamiltonian cycles on the n X k king graph.

Original entry on oeis.org

3, 4, 4, 8, 16, 8, 16, 120, 120, 16, 32, 744, 2830, 744, 32, 64, 4922, 50354, 50354, 4922, 64, 128, 31904, 1003218, 2462064, 1003218, 31904, 128, 256, 208118, 19380610, 139472532, 139472532, 19380610, 208118, 256, 512, 1354872, 378005474, 7621612496, 22853860116, 7621612496, 378005474, 1354872, 512
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Examples

			Square array T(n,k) begins:
   3,     4,        8,         16,            32,               64, ...
   4,    16,      120,        744,          4922,            31904, ...
   8,   120,     2830,      50354,       1003218,         19380610, ...
  16,   744,    50354,    2462064,     139472532,       7621612496, ...
  32,  4922,  1003218,  139472532,   22853860116,    3601249330324, ...
  64, 31904, 19380610, 7621612496, 3601249330324, 1622043117414624, ...
		

Crossrefs

Rows and columns 3..5 give A339200, A339201, A339202.
Main diagonal gives A140519.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339190(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    print([A339190(j + 2, i - j + 2) for i in range(10 - 1) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).

A338970 Number of Hamiltonian circuits within parallelograms of size 6 X n on the triangular lattice.

Original entry on oeis.org

1, 148, 3851, 104100, 3292184, 100766213, 3061629439, 93391009587, 2848083212818, 86830428575045, 2647502223122183, 80723479583077760, 2461270742015683063, 75044735473463888913, 2288131799382045208904, 69765663287027937162894, 2127171274594978600181825
Offset: 2

Views

Author

Seiichi Manyama, Dec 22 2020

Keywords

Crossrefs

Row 6 of A339849.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A338970(n):
        return A339849(6, n)
    print([A338970(n) for n in range(2, 21)])

Formula

a(n) = 17*a(n-1) + 308*a(n-2) + 3718*a(n-3) - 8944*a(n-4) - 203602*a(n-5) - 1760279*a(n-6) + 4214627*a(n-7) + 41830213*a(n-8) + 225676161*a(n-9) - 831546864*a(n-10) - 1396419616*a(n-11) + 512302093*a(n-12) + 33910901047*a(n-13) - 148248035667*a(n-14) - 71591956081*a(n-15) - 513969061657*a(n-16) + 7189182969047*a(n-17) - 715460439786*a(n-18) - 14144097438176*a(n-19) - 98092600745077*a(n-20) + 85281523978859*a(n-21) + 258795398812831*a(n-22) + 401976432666415*a(n-23) - 697015148397353*a(n-24) - 1758566032640649*a(n-25) - 264807487370149*a(n-26) + 4376962161634247*a(n-27) + 3596247130566579*a(n-28) - 6063704165801647*a(n-29) - 8646051339082444*a(n-30) + 5835042622094674*a(n-31) + 6933527488046106*a(n-32) - 7132151429649894*a(n-33) + 20873887165808038*a(n-34) + 29863609327174220*a(n-35) - 87774083631942821*a(n-36) - 68828169378762625*a(n-37) + 225928479008894240*a(n-38) + 166683205556809600*a(n-39) - 356968376341177252*a(n-40) - 245673717744507896*a(n-41) + 422903422959769596*a(n-42) + 289000909472562036*a(n-43) - 361042953299243779*a(n-44) - 202310840488094013*a(n-45) + 242723645635132041*a(n-46) + 82279920889031937*a(n-47) - 155265862998823478*a(n-48) - 13018457616632292*a(n-49) + 67639720944495480*a(n-50) - 9667244690991964*a(n-51) - 31287094134056814*a(n-52) + 1545150609982282*a(n-53) + 8997455545061173*a(n-54) + 24411045321863*a(n-55) + 1327281913998467*a(n-56) - 170070264293775*a(n-57) - 805550117698830*a(n-58) + 216517794712850*a(n-59) - 52923920646375*a(n-60) - 35520984357973*a(n-61) + 51225395752594*a(n-62) - 8890010884230*a(n-63) - 16237588330384*a(n-64) + 11906791455940*a(n-65) - 1733110955966*a(n-66) - 1390781505668*a(n-67) + 906089436294*a(n-68) - 184492249544*a(n-69) - 33856007801*a(n-70) + 30446303315*a(n-71) - 8206589201*a(n-72) + 1104875633*a(n-73) - 70159467*a(n-74) + 579969*a(n-75) + 16576*a(n-76) + 100*a(n-77) for n > 80.

A339622 Number of Hamiltonian circuits within parallelograms of size 7 X n on the triangular lattice.

Original entry on oeis.org

1, 498, 26499, 1475286, 100766213, 6523266332, 418172485806, 26971800950170, 1738936046774850, 112060168171247368, 7222422644817870197, 465494892350086836970, 30001329862709920944426, 1933604967243463575726934, 124622105764386987040047037, 8031972575008760516889720476
Offset: 2

Views

Author

Seiichi Manyama, Dec 25 2020

Keywords

Crossrefs

Row 7 of A339849.
Cf. A145416.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339622(n):
        return A339849(7, n)
    print([A339622(n) for n in range(2, 8)])

A339850 Number of Hamiltonian circuits within parallelograms of size 3 X n on the triangular lattice.

Original entry on oeis.org

1, 4, 13, 44, 148, 498, 1676, 5640, 18980, 63872, 214944, 723336, 2434192, 8191616, 27566672, 92768192, 312186304, 1050578720, 3535439040, 11897565568, 40038044736, 134737229824, 453421769728, 1525868548224, 5134898635008, 17280115002368, 58151561641216
Offset: 2

Views

Author

Seiichi Manyama, Dec 19 2020

Keywords

Examples

			a(2) = 1:
      *---*
     /   /
    *   *
   /   /
  *---*
a(3) = 4:
      *   *---*      *---*---*
     / \ /   /        \     /
    *   *   *      *---*   *
   /       /      /       /
  *---*---*      *---*---*
      *---*---*      *---*---*
     /       /      /       /
    *   *   *      *   *---*
   /   / \ /      /     \
  *---*   *      *---*---*
		

Crossrefs

Row 3 of A339849.
Cf. A339200.

Programs

  • Mathematica
    Drop[CoefficientList[Series[(x (1 + x))^2/(1 - 2 x - 4 x^2 - 2 x^3), {x, 0, 28}], x], 2] (* Michael De Vlieger, Jul 06 2021 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec((x*(1+x))^2/(1-2*x-4*x^2-2*x^3))
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339850(n):
        return A339849(3, n)
    print([A339850(n) for n in range(2, 21)])

Formula

G.f.: (x*(1+x))^2/(1-2*x-4*x^2-2*x^3).
a(n) = 2*a(n-1) + 4*a(n-2) + 2*a(n-3) for n > 4.

A339851 Number of Hamiltonian circuits within parallelograms of size 4 X n on the triangular lattice.

Original entry on oeis.org

1, 13, 80, 549, 3851, 26499, 183521, 1269684, 8782833, 60764640, 420375910, 2908245096, 20119820809, 139192751951, 962962619849, 6661962019139, 46088745527485, 318850883829314, 2205872265781839, 15260652269262421, 105576152878533354, 730396306808551777, 5053023343572544589
Offset: 2

Views

Author

Seiichi Manyama, Dec 19 2020

Keywords

Crossrefs

Row 4 of A339849.
Cf. A339201.

Programs

  • Mathematica
    CoefficientList[Series[x^2(1+10x+20x^2-8x^3-43x^4+9x^5+34x^6-42x^7+24x^8-7x^9+x^10)/(1-3x-21x^2-44x^3+5x^4+47x^5+26x^6-83x^7+81x^8-39x^9+10x^10-x^11),{x,0,30}],x] (* or *) LinearRecurrence[{3,21,44,-5,-47,-26,83,-81,39,-10,1},{1,13,80,549,3851,26499,183521,1269684,8782833,60764640,420375910},30] (* Harvey P. Dale, Mar 30 2023 *)
  • PARI
    N=40; a=vector(N); a[2]=1; a[3]=13; a[4]=80; a[5]=549; a[6]=3851; a[7]=26499; a[8]=183521; a[9]=1269684; a[10]=8782833; a[11]=60764640; a[12]=420375910; for(n=13, N, a[n]=3*a[n-1]+21*a[n-2]+44*a[n-3]-5*a[n-4]-47*a[n-5]-26*a[n-6]+83*a[n-7]-81*a[n-8]+39*a[n-9]-10*a[n-10]+a[n-11]); a[2..N]
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339851(n):
        return A339849(4, n)
    print([A339851(n) for n in range(2, 21)])

Formula

a(n) = 3*a(n-1) + 21*a(n-2) + 44*a(n-3) - 5*a(n-4) - 47*a(n-5) - 26*a(n-6) + 83*a(n-7) - 81*a(n-8) + 39*a(n-9) - 10*a(n-10) + a(n-11) for n > 12.
G.f.: x^2*(1 + 10*x + 20*x^2 - 8*x^3 - 43*x^4 + 9*x^5 + 34*x^6 - 42*x^7 + 24*x^8 - 7*x^9 + x^10) / (1 - 3*x - 21*x^2 - 44*x^3 + 5*x^4 + 47*x^5 + 26*x^6 - 83*x^7 + 81*x^8 - 39*x^9 + 10*x^10 - x^11). - Vaclav Kotesovec, Dec 23 2020

A339852 Number of Hamiltonian circuits within parallelograms of size 5 X n on the triangular lattice.

Original entry on oeis.org

1, 44, 549, 7104, 104100, 1475286, 20842802, 295671198, 4190083085, 59374628434, 841470846944, 11925007688342, 168996943899738, 2394974040514288, 33940795571394262, 480998063196253650, 6816550836218124869, 96601974078400509612, 1369012239935377295854, 19401203058253673198258
Offset: 2

Views

Author

Seiichi Manyama, Dec 19 2020

Keywords

Crossrefs

Row 5 of A339849.
Cf. A339202.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339852(n):
        return A339849(5, n)
    print([A339852(n) for n in range(2, 21)])

Formula

a(2)..a(31) = [1, 44, 549, 7104, 104100, 1475286, 20842802, 295671198, 4190083085, 59374628434, 841470846944, 11925007688342, 168996943899738, 2394974040514288, 33940795571394262, 480998063196253650, 6816550836218124869, 96601974078400509612, 1369012239935377295854, 19401203058253673198258, 274947636268050621400764, 3896469848341602644039976, 55219522831075639350876744, 782553393257523404353337072, 11090096073215866151573834374, 157165289898796544200350430624, 2227296155585971455156172389428, 31564527815820044279227403214372, 447322379530320420841684880901414, 6339309505792160540792742125116082] and
a(n) = 8*a(n-1) + 62*a(n-2) + 384*a(n-3) - 160*a(n-4) - 1628*a(n-5) - 11310*a(n-6) + 9700*a(n-7) - 16019*a(n-8) + 102564*a(n-9) - 98380*a(n-10) + 263340*a(n-11) - 429661*a(n-12) + 174728*a(n-13) - 361330*a(n-14) + 147404*a(n-15) + 284641*a(n-16) + 24764*a(n-17) + 182412*a(n-18) - 156248*a(n-19) - 138559*a(n-20) + 14756*a(n-21) + 14496*a(n-22) - 3660*a(n-23) - 2640*a(n-24) + 328*a(n-25) + 80*a(n-26) - 8*a(n-27) for n > 31.

A339854 Number of Hamiltonian circuits within parallelograms of size n X n on the triangular lattice.

Original entry on oeis.org

1, 4, 80, 7104, 3292184, 6523266332, 56203566442908, 2176852129116199068, 373334515946952014204102, 281931891850296665963970600460, 939652851372937937187518231503848142, 13807942929878598929190143960742601141566220, 893498265685263112931409501489577970162598024007690
Offset: 2

Views

Author

Seiichi Manyama, Dec 19 2020

Keywords

Examples

			a(2) = 1:
    *---*
   /   /
  *---*
a(3) = 4:
      *   *---*      *---*---*
     / \ /   /        \     /
    *   *   *      *---*   *
   /       /      /       /
  *---*---*      *---*---*
      *---*---*      *---*---*
     /       /      /       /
    *   *   *      *   *---*
   /   / \ /      /     \
  *---*   *      *---*---*
		

Crossrefs

Main diagonal of A339849.
Cf. A140519.

Extensions

More terms from Ed Wynn, Jun 28 2023

A339960 Number of Hamiltonian circuits within parallelograms of size 8 X n on the triangular lattice.

Original entry on oeis.org

1, 1676, 183521, 20842802, 3061629439, 418172485806, 56203566442908, 7621726574570613, 1033232532941136255, 139934009951521872490, 18955155770535463735959, 2567688102114635009977537, 347811042296785583958285788, 47113523803568895604053871759, 6381875340326645360658645942215
Offset: 2

Views

Author

Seiichi Manyama, Dec 25 2020

Keywords

Crossrefs

Row 8 of A339849.
Cf. A145418.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_T_nk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339849(n, k):
        universe = make_T_nk(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339960(n):
        return A339849(8, n)
    print([A339960(n) for n in range(2, 8)])

A339961 Number of Hamiltonian circuits within parallelograms of size 9 X n on the triangular lattice.

Original entry on oeis.org

1, 5640, 1269684, 295671198, 93391009587, 26971800950170, 7621726574570613, 2176852129116199068, 621423541447699842468, 177129811732376379317558, 50496098726203776039975335, 14395928063309130831417237704, 4103904494029399087473676726278
Offset: 2

Views

Author

Seiichi Manyama, Dec 25 2020

Keywords

Crossrefs

Row 9 of A339849.
Cf. A160149.

A339962 Number of Hamiltonian circuits within parallelograms of size 10 X n on the triangular lattice.

Original entry on oeis.org

1, 18980, 8782833, 4190083085, 2848083212818, 1738936046774850, 1033232532941136255, 621423541447699842468, 373334515946952014204102, 223802065032649969887333948, 134170413630013820290109500226, 80436114451156297907062202392494, 48216986287603185632341666866663007
Offset: 2

Views

Author

Seiichi Manyama, Dec 25 2020

Keywords

Crossrefs

Row 10 of A339849.
Cf. A180504.
Showing 1-10 of 10 results.