A339190
Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) Hamiltonian cycles on the n X k king graph.
Original entry on oeis.org
3, 4, 4, 8, 16, 8, 16, 120, 120, 16, 32, 744, 2830, 744, 32, 64, 4922, 50354, 50354, 4922, 64, 128, 31904, 1003218, 2462064, 1003218, 31904, 128, 256, 208118, 19380610, 139472532, 139472532, 19380610, 208118, 256, 512, 1354872, 378005474, 7621612496, 22853860116, 7621612496, 378005474, 1354872, 512
Offset: 2
Square array T(n,k) begins:
3, 4, 8, 16, 32, 64, ...
4, 16, 120, 744, 4922, 31904, ...
8, 120, 2830, 50354, 1003218, 19380610, ...
16, 744, 50354, 2462064, 139472532, 7621612496, ...
32, 4922, 1003218, 139472532, 22853860116, 3601249330324, ...
64, 31904, 19380610, 7621612496, 3601249330324, 1622043117414624, ...
-
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339190(n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
print([A339190(j + 2, i - j + 2) for i in range(10 - 1) for j in range(i + 1)])
A338970
Number of Hamiltonian circuits within parallelograms of size 6 X n on the triangular lattice.
Original entry on oeis.org
1, 148, 3851, 104100, 3292184, 100766213, 3061629439, 93391009587, 2848083212818, 86830428575045, 2647502223122183, 80723479583077760, 2461270742015683063, 75044735473463888913, 2288131799382045208904, 69765663287027937162894, 2127171274594978600181825
Offset: 2
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A338970(n):
return A339849(6, n)
print([A338970(n) for n in range(2, 21)])
A339622
Number of Hamiltonian circuits within parallelograms of size 7 X n on the triangular lattice.
Original entry on oeis.org
1, 498, 26499, 1475286, 100766213, 6523266332, 418172485806, 26971800950170, 1738936046774850, 112060168171247368, 7222422644817870197, 465494892350086836970, 30001329862709920944426, 1933604967243463575726934, 124622105764386987040047037, 8031972575008760516889720476
Offset: 2
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339622(n):
return A339849(7, n)
print([A339622(n) for n in range(2, 8)])
A339850
Number of Hamiltonian circuits within parallelograms of size 3 X n on the triangular lattice.
Original entry on oeis.org
1, 4, 13, 44, 148, 498, 1676, 5640, 18980, 63872, 214944, 723336, 2434192, 8191616, 27566672, 92768192, 312186304, 1050578720, 3535439040, 11897565568, 40038044736, 134737229824, 453421769728, 1525868548224, 5134898635008, 17280115002368, 58151561641216
Offset: 2
a(2) = 1:
*---*
/ /
* *
/ /
*---*
a(3) = 4:
* *---* *---*---*
/ \ / / \ /
* * * *---* *
/ / / /
*---*---* *---*---*
*---*---* *---*---*
/ / / /
* * * * *---*
/ / \ / / \
*---* * *---*---*
- Seiichi Manyama, Table of n, a(n) for n = 2..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- M. Peto, Studies of protein designability using reduced models, Thesis, 2007.
- Index entries for linear recurrences with constant coefficients, signature (2,4,2).
-
Drop[CoefficientList[Series[(x (1 + x))^2/(1 - 2 x - 4 x^2 - 2 x^3), {x, 0, 28}], x], 2] (* Michael De Vlieger, Jul 06 2021 *)
-
my(N=66, x='x+O('x^N)); Vec((x*(1+x))^2/(1-2*x-4*x^2-2*x^3))
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339850(n):
return A339849(3, n)
print([A339850(n) for n in range(2, 21)])
A339851
Number of Hamiltonian circuits within parallelograms of size 4 X n on the triangular lattice.
Original entry on oeis.org
1, 13, 80, 549, 3851, 26499, 183521, 1269684, 8782833, 60764640, 420375910, 2908245096, 20119820809, 139192751951, 962962619849, 6661962019139, 46088745527485, 318850883829314, 2205872265781839, 15260652269262421, 105576152878533354, 730396306808551777, 5053023343572544589
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..1000
- M. Peto, Studies of protein designability using reduced models, Thesis, 2007.
- Index entries for linear recurrences with constant coefficients, signature (3,21,44,-5,-47,-26,83,-81,39,-10,1)
-
CoefficientList[Series[x^2(1+10x+20x^2-8x^3-43x^4+9x^5+34x^6-42x^7+24x^8-7x^9+x^10)/(1-3x-21x^2-44x^3+5x^4+47x^5+26x^6-83x^7+81x^8-39x^9+10x^10-x^11),{x,0,30}],x] (* or *) LinearRecurrence[{3,21,44,-5,-47,-26,83,-81,39,-10,1},{1,13,80,549,3851,26499,183521,1269684,8782833,60764640,420375910},30] (* Harvey P. Dale, Mar 30 2023 *)
-
N=40; a=vector(N); a[2]=1; a[3]=13; a[4]=80; a[5]=549; a[6]=3851; a[7]=26499; a[8]=183521; a[9]=1269684; a[10]=8782833; a[11]=60764640; a[12]=420375910; for(n=13, N, a[n]=3*a[n-1]+21*a[n-2]+44*a[n-3]-5*a[n-4]-47*a[n-5]-26*a[n-6]+83*a[n-7]-81*a[n-8]+39*a[n-9]-10*a[n-10]+a[n-11]); a[2..N]
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339851(n):
return A339849(4, n)
print([A339851(n) for n in range(2, 21)])
A339852
Number of Hamiltonian circuits within parallelograms of size 5 X n on the triangular lattice.
Original entry on oeis.org
1, 44, 549, 7104, 104100, 1475286, 20842802, 295671198, 4190083085, 59374628434, 841470846944, 11925007688342, 168996943899738, 2394974040514288, 33940795571394262, 480998063196253650, 6816550836218124869, 96601974078400509612, 1369012239935377295854, 19401203058253673198258
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..500
- M. Peto, Studies of protein designability using reduced models, Thesis, 2007.
- Index entries for linear recurrences with constant coefficients, signature (8,62,384,160,-1628,-11310,9700,-16019,102564, -98380,263340, -429661,174728,-361330,147404,284641,24764,182412,-156248, -138559,14756,14496,-3660,-2640,328,80,-8)
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339852(n):
return A339849(5, n)
print([A339852(n) for n in range(2, 21)])
A339854
Number of Hamiltonian circuits within parallelograms of size n X n on the triangular lattice.
Original entry on oeis.org
1, 4, 80, 7104, 3292184, 6523266332, 56203566442908, 2176852129116199068, 373334515946952014204102, 281931891850296665963970600460, 939652851372937937187518231503848142, 13807942929878598929190143960742601141566220, 893498265685263112931409501489577970162598024007690
Offset: 2
a(2) = 1:
*---*
/ /
*---*
a(3) = 4:
* *---* *---*---*
/ \ / / \ /
* * * *---* *
/ / / /
*---*---* *---*---*
*---*---* *---*---*
/ / / /
* * * * *---*
/ / \ / / \
*---* * *---*---*
More terms from
Ed Wynn, Jun 28 2023
A339960
Number of Hamiltonian circuits within parallelograms of size 8 X n on the triangular lattice.
Original entry on oeis.org
1, 1676, 183521, 20842802, 3061629439, 418172485806, 56203566442908, 7621726574570613, 1033232532941136255, 139934009951521872490, 18955155770535463735959, 2567688102114635009977537, 347811042296785583958285788, 47113523803568895604053871759, 6381875340326645360658645942215
Offset: 2
-
# Using graphillion
from graphillion import GraphSet
def make_T_nk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339849(n, k):
universe = make_T_nk(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
def A339960(n):
return A339849(8, n)
print([A339960(n) for n in range(2, 8)])
A339961
Number of Hamiltonian circuits within parallelograms of size 9 X n on the triangular lattice.
Original entry on oeis.org
1, 5640, 1269684, 295671198, 93391009587, 26971800950170, 7621726574570613, 2176852129116199068, 621423541447699842468, 177129811732376379317558, 50496098726203776039975335, 14395928063309130831417237704, 4103904494029399087473676726278
Offset: 2
A339962
Number of Hamiltonian circuits within parallelograms of size 10 X n on the triangular lattice.
Original entry on oeis.org
1, 18980, 8782833, 4190083085, 2848083212818, 1738936046774850, 1033232532941136255, 621423541447699842468, 373334515946952014204102, 223802065032649969887333948, 134170413630013820290109500226, 80436114451156297907062202392494, 48216986287603185632341666866663007
Offset: 2
Showing 1-10 of 10 results.