cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180510 G.f.: (t^5 + 2*t^4 + t^3 + 2*t^2 + t) / (t^6 + t^5 - 2*t^4 - 5*t^3 - 2*t^2 + t + 1).

Original entry on oeis.org

0, 1, 1, 2, 7, 5, 20, 27, 49, 106, 155, 331, 560, 1013, 1917, 3310, 6223, 11117, 20140, 36899, 66185, 121014, 218791, 396703, 721280, 1305025, 2371433, 4298618, 7796439, 14150029, 25652500, 46550531, 84427441, 153141122, 277824947, 503893035, 914114320, 1658100757, 3007674389, 5455918726, 9896444495, 17951959061, 32563657260
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2011

Keywords

Comments

An example of a sextic divisibility sequence whose characteristic polynomial has degree 6 and a 12-element dihedral Galois group. This example has a field and polynomial discriminant of 98000, which is one of the smallest possible.

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 5*x^5 + 20*x^6 + 27*x^7 + 49*x^8 + 106*x^9 + ... - _Michael Somos_, Dec 30 2022
		

References

  • Found by Noam D. Elkies and described in an email from Elkies to R. K. Guy, Jan 18 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[(x^5 + 2x^4 + x^3 + 2x^2 + x)/(x^6 + x^5 - 2x^4 - 5x^3 - 2x^2 + x + 1), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 26 2011 *)
    a[1] = 0; a[2] = 1; a[3] = 1; a[4] = 2; a[5] = 7; a[6] = 5; a[n_Integer] := a[n] = -a[n - 6] - a[n - 5] + 2 a[n - 4] + 5 a[n - 3] + 2 a[n - 2] - a[n - 1] (* Or *)
    LinearRecurrence[{-1, 2, 5, 2, -1, -1}, {0, 1, 1, 2, 7, 5}, 43] (* Roger L. Bagula, Mar 16 2012 *)
    a[ n_] := a[n] = Sign[n]*With[{m = Abs[n]}, If[ m<4, {0, 1, 1, 2}[[m+1]], -a[m-1] +2*a[m-2] +5*a[m-3] +2*a[m-4] -a[m-5] -a[m-6]]]; (* Michael Somos, Dec 30 2022 *)
  • Maxima
    makelist(coeff(taylor(x*(x^4+2*x^3+x^2+2*x+1)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1), x, 0, n), x, n), n, 1, 42);  /* Bruno Berselli, Jun 05 2011 */
    
  • PARI
    Vec((x^5+2*x^4+x^3+2*x^2+x)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1)+O(x^99)) \\ Charles R Greathouse IV, Jun 06 2011
    
  • PARI
    {a(n) = sign(n)*polcoeff((x^5 + 2*x^4 + x^3 + 2*x^2 + x)/(x^6 + x^5 - 2*x^4 - 5*x^3 - 2*x^2 + x + 1) + x*O(x^abs(n)), abs(n))}; /* Michael Somos, Dec 30 2022 */

Formula

a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 30 2022