A209440
G.f.: 1 = Sum_{n>=0} a(n)*x^n * (1-x)^((n+1)^2).
Original entry on oeis.org
1, 1, 4, 30, 340, 5235, 102756, 2464898, 70120020, 2313120225, 86962820000, 3674969314090, 172615622432040, 8928295918586815, 504561763088722500, 30946605756915149850, 2048137516834986743700, 145535818715694311408181, 11054204297079333714850260
Offset: 0
G.f.: 1 = 1*(1-x) + 1*x*(1-x)^4 + 4*x^2*(1-x)^9 + 30*x^3*(1-x)^16 + 340*x^4*(1-x)^25 +...
-
a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
*(-1)^(n-j)*binomial((j+1)^2, n-j), j=0..n-1))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Jul 08 2022
-
a[0] := 1; a[n_] := a[n] = Sum[(-1)^(n + 1 - k)*a[k]*Binomial[(k + 1)^2, n - k], {k, 0, n - 1}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 02 2018 *)
-
{a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*(1-x+x*O(x^n))^((m+1)^2)), n))}
-
{a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(n+1-k)*a(k)*binomial((k+1)^2,n-k)))}
for(n=0,20,print1(a(n),", "))
A181167
G.f.: 1 = Sum_{n>=0} a(n)*x^n* Sum_{k>=0} C(2n+k,k)^2*(-x)^k.
Original entry on oeis.org
1, 1, 8, 165, 6384, 397320, 36273600, 4566166605, 757975618400, 160424015864112, 42164387189608320, 13473505313334666600, 5144136790654611953280, 2312696796696904699224000, 1209297981696245764641077760, 727688337054213932985609546525
Offset: 0
E.g.f.: E(x) = 1 + x^2/2! + 8*x^4/4! + 165*x^6/6! + 6384*x^8/8! +...
where the e.g.f. equals the continued fraction:
E(x) = 1/(1 - x^2/(2 - x^2/(3 - x^2/(4 - x^2/(5 - x^2/(6 - x^2/(7 - x^2/(8 - x^2/(9 - x^2/(10 - ...)))))))))). [Due to Matthieu Josuat-Vergès]
Illustrate the g.f. by the series:
1 = 1*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*x*(1 - 3^2*x + 6^2*x^2 - 10^2*x^3 + 15^2*x^4 - 21^2*x^5 +...)
+ 8*x^2*(1 - 5^2*x + 15^2*x^2 - 35^2*x^3 + 70^2*x^4 - 126^2*x^5 +...)
+ 165*x^3*(1 - 7^2*x + 28^2*x^2 - 84^2*x^3 + 210^2*x^4 - 462^2*x^5+...)
+ 6384*x^4*(1 - 9^2*x + 45^2*x^2 - 165^2*x^3 + 495^2*x^4 +...)
+ 397320*x^5*(1 - 11^2*x + 66^2*x^2 - 286^2*x^3 + 1001^2*x^4 +...)
+ 36273600*x^6*(1 - 13^2*x + 91^2*x^2 - 455^2*x^3 + 1820^2*x^4 +...)
+ 4566166605*x^7*(1 - 15^2*x + 120^2*x^2 - 680^2*x^3 + 3060^2*x^4 +...)
+...
Compare to a g.f. of the Catalan numbers (A000108):
1 = 1*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*x*(1 - 3*x + 6*x^2 - 10*x^3 + 15*x^4 - 21*x^5 +...)
+ 2*x^2*(1 - 5*x + 15*x^2 - 35*x^3 + 70*x^4 - 126*x^5 +...)
+ 5*x^3*(1 - 7*x + 28*x^2 - 84*x^3 + 210*x^4 - 462*x^5 +...)
+ 14*x^4*(1 - 9*x + 45*x^2 - 165*x^3 + 495*x^4 - 1287*x^5 +...)
+ 42*x^5*(1 - 11*x + 66*x^2 - 286*x^3 + 1001*x^4 - 3003*x^5 +...)
+ 132*x^6*(1 - 13*x + 91*x^2 - 455*x^3 + 1820*x^4 - 6188*x^5 +...)
+...
Surprisingly, terms a(n) are divisible by n*A000108(n) for n>0:
a(2)=2*2*2, a(3)=3*5*11, a(4)=4*14*114, a(5)=5*42*1892, a(6)=6*132*45800, a(7)=7*429*1520535, ..., a(n)=n*A000108(n)*A181168(n).
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, x/(y+1)*(b(x-1, y-1)+b(x-1, y+1))))
end:
a:= n-> b(2*n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 08 2018
-
nmax=20; Table[(CoefficientList[Series[BesselJ[1,2*x]/x/BesselJ[0,2*x],{x,0,2*nmax}],x] * Range[0,2*nmax]!)[[2*n-1]],{n,1,nmax}] (* Vaclav Kotesovec, Jul 31 2014 *)
-
{a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, n-m, binomial(2*m+k, k)^2*(-x)^k)+x*O(x^n)), n))}
-
/* Formula: a(n) = A000108(n)*A002190(n+1) implies: */
{a(n)=binomial(2*n,n)/(n+1)*(n+1)!^2*polcoeff(-log(sum(m=0,n+1,(-x)^m/m!^2)+O(x^(n+2))),n+1)} \\ Paul D. Hanna, Oct 09 2010
-
/* Continued Fraction expansion of the E.G.F.: */
{a(n)=local(CF=1+O(x));for(i=0,n,CF=1/((n-i+1)-x^2*CF));(2*n)!*polcoeff(CF,2*n)}
A217042
G.f.: 1 = Sum_{n>=0} a(n) * x^n * Sum_{k=0..2*n+1} binomial(2*n+1,k)^2 * (-x)^k.
Original entry on oeis.org
1, 1, 9, 216, 9685, 690129, 71218224, 10016312400, 1839013713405, 426795483514725, 122096137679279577, 42196285096882327872, 17327812666870134181584, 8338575020551966129589776, 4647348123388957546230426120, 2969504710005383652330487580832
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 216*x^3 + 9685*x^4 + 690129*x^5 +...
The coefficients satisfy:
1 = 1*(1 - x) + 1*x*(1 - 3^2*x^1 + 3^2*x^2 - x^3) +
9*x^2*(1 - 5^2*x^1 + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5) +
216*x^3*(1 - 7^2*x^1 + 21^2*x^2 - 35^2*x^3 + 35^2*x^4 - 21^2*x^5 + 7^2*x^6 - x^7) +
9685*x^4*(1 - 9^2*x^1 + 36^2*x^2 - 84^2*x^3 + 126^2*x^4 - 126^2*x^5 + 84^2*x^6 - 36^2*x^7 + 9^2*x^8 - x^9) +
690129*x^5*(1 - 11^2*x^1 + 55^2*x^2 - 165^2*x^3 + 330^2*x^4 - 462^2*x^5 + 462^2*x^6 - 330^2*x^7 + 165^2*x^8 - 55^2*x^9 + 11^2*x^10 - x^11) +...
-
{a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, 2*m+1, binomial(2*m+1, k)^2*(-x)^k)+x*O(x^n)), n))}
for(n=0,31,print1(a(n),", "))
A247032
G.f.: 1 = Sum_{n>=0} a(n) * x^n * Sum_{k=0..n} C(n,k)^3 * (-x)^k.
Original entry on oeis.org
1, 1, 8, 215, 13544, 1646568, 342128448, 111806434449, 54089613731960, 36991616761628936, 34487632073741256512, 42564197996724997147672, 67876867685905911079322176, 137043021921732373141812704320, 344286933629331983612822165758464, 1060279482920092978432461141783224583
Offset: 0
-
{a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, m+1, binomial(m+1, k)^3*(-x)^k+x*O(x^n))^1 ), n))}
for(n=0,10,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments