Original entry on oeis.org
1, 5, 16, 61, 226, 884, 3543, 14429, 59623, 248950, 1049159, 4454356, 19032976, 81769735, 352967821, 1529948477, 6655903632, 29050257899, 127162016206, 558088733406, 2455157735151, 10824115727199, 47814658900427
Offset: 1
L.g.f.: L(x) = x + 5*x^2/2 + 16*x^3/3 + 61*x^4/4 + 226*x^5/5 +...
which equals the sum of the series:
L(x) = (1 + x)^2*x
+ (1 + 4*x + x^2)^2*x^2/2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3/3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4/4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5/5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6/6 +...
where exponentiation yields the integer series:
exp(L(x)) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 80*x^5 + 271*x^6 + 952*x^7 + 3443*x^8 + 12758*x^9 + 48212*x^10 +...+ A180718(n)*x^n/n +...
-
{a(n)=n*polcoeff(sum(m=1,n,sum(k=0,m,binomial(m,k)^2*x^k)^2*x^m/m)+x*O(x^n),n)}
A186236
G.f.: exp( Sum_{n>=0} [ Sum_{k=0..2*n} A027907(n,k)^2 * x^k ]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 2, 5, 13, 34, 93, 262, 753, 2198, 6502, 19449, 58724, 178739, 547836, 1689407, 5237939, 16318137, 51056027, 160363129, 505456920, 1598263936, 5068483189, 16116397411, 51371962474, 164123564499, 525447953073, 1685534207788, 5416719384326, 17437073203711
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 34*x^5 + 93*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 91*x^5/5 + 282*x^6/6 + 890*x^7/7 + 2831*x^8/8 + 9055*x^9/9 + 29133*x^10/10 +...
which equals the sum of the series:
log(A(x)) = (1 + x + x^2)*x
+ (1 + 2^2*x + 3^2*x^2 + 2^2*x^3 + x^4)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 7^2*x^3 + 6^2*x^4 + 3*x^5 + x^6)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 16^2*x^3 + 19^2*x^4 + 16^2*x^5 + 10^2*x^6 + 4^2*x^7 + x^8)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 30^2*x^3 + 45^2*x^4 + 51^2*x^5 + 45^2*x^6 + 30^2*x^7 + 15^2*x^8 + 5^2*x^9 + x^10)*x^5/5 +...
-
{A027907(n,k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, A027907(m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
A180717
G.f.: Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]^2 * x^n.
Original entry on oeis.org
1, 1, 3, 10, 37, 140, 544, 2181, 8873, 36647, 152950, 644313, 2734648, 11681428, 50173541, 216532005, 938383331, 4081653710, 17811999929, 77957939080, 342099306436, 1504801777973, 6633574235109, 29300516237855
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 140*x^5 + 544*x^6 +...
equals the sum of the series:
A(x) = 1 + (1 + x)^2*x + (1 + 4*x + x^2)^2*x^2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6 +...
-
{a(n)=polcoeff(sum(m=0,n,sum(k=0,m,binomial(m,k)^2*x^k)^2*x^m)+x*O(x^n),n)}
A197601
G.f.: exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n ).
Original entry on oeis.org
1, 1, 5, 14, 52, 187, 708, 2734, 10758, 43004, 174004, 711660, 2936564, 12211688, 51124185, 215299685, 911445413, 3876523626, 16556573129, 70980163570, 305343924258, 1317634326631, 5702146948069, 24741071869651, 107608326588838, 469073933764287
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + 9017*x^7/7 + 38969*x^8/8 +...+ A198059(n)*x^n/n +...
and equals the sum of the series:
log(A(x)) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 +...
which involves the squares of the coefficients in even powers of (1+x).
The logarithm of the g.f. can also be expressed as:
log(A(x)) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 +...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 +...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 +...)*x^5/5 +...
which involves the squares of the coefficients in odd powers of 1/(1-x).
-
nmax = 30; CoefficientList[Series[Exp[Sum[Hypergeometric2F1[-2*k, -2*k, 1, x]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2022 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(2*m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k+x*O(x^n)) *x^m/m)+x*O(x^n)), n)}
A196559
G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k]^2 * x^n/n ).
Original entry on oeis.org
1, 1, 3, 12, 65, 384, 2197, 14078, 94739, 670612, 4899280, 36645899, 281037158, 2197679518, 17489660228, 141241307806, 1155345218645, 9559672712389, 79905432682918, 674005489358155, 5731854529045978, 49105864505432392, 423531623342726441
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 65*x^4 + 384*x^5 + 2197*x^6 +...
where
log(A(x)) = (1 + x)^2*x + (1+2^3*x+x^2)^2*x^2/2 + (1+3^3*x+3^3*x^2+x^3)^2*x^3/3 + (1+4^3*x+6^3*x^2+4^3*x^3+x^4)^2*x^4/4 +...
More explicitly,
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 205*x^4/4 + 1506*x^5/5 + 10016*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3*x^k)^2*x^m/m)+x*O(x^n)), n)}
A196560
G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4 * x^k]^2 * x^n/n ).
Original entry on oeis.org
1, 1, 3, 20, 205, 2624, 24793, 283522, 3639005, 50426826, 740744940, 10801827249, 163698355616, 2554965416964, 40878247859612, 667841855292388, 11051724909284834, 185702751266940874, 3162454792706586691, 54508849210857505845
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 205*x^4 + 2624*x^5 + 24793*x^6 +...
where
log(A(x)) = (1 + x)^2*x + (1+2^4*x+x^2)^2*x^2/2 + (1+3^4*x+3^4*x^2+x^3)^2*x^3/3 + (1+4^4*x+6^4*x^2+4^4*x^3+x^4)^2*x^4/4 +...
More explicitly,
log(A(x)) = x + 5*x^2/2 + 52*x^3/3 + 733*x^4/4 + 11926*x^5/5 + 129944*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4*x^k)^2*x^m/m)+x*O(x^n)), n)}
Showing 1-6 of 6 results.
Comments