A180853 Trajectory of 4 under map n->A006368(n).
4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5
Offset: 0
References
- D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.
Links
- J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1)
Crossrefs
Programs
-
Haskell
a180853 n = a180853_list !! n a180853_list = iterate a006368 4 -- Reinhard Zumkeller, Apr 18 2012
-
Mathematica
Table[{4, 6, 9, 7, 5}, {21}] // Flatten (* Jean-François Alcover, Jun 10 2013 *) PadRight[{},120,{4,6,9,7,5}] (* Harvey P. Dale, Jul 11 2020 *)
-
PARI
Vec((-4-6*x-9*x^2-7*x^3-5*x^4)/((x-1)*(1+x+x^2+x^3+x^4))+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
Formula
Periodic with period of length 5.
G.f.: ( -4-6*x-9*x^2-7*x^3-5*x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Mar 10 2011
a(n+1) = A006368(a(n)).
a(n) = a(n-5). - Wesley Ivan Hurt, Apr 26 2021
Comments