A180874 Lassalle's sequence connected with Catalan numbers and Narayana polynomials.
1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616, 62720089624920, 8646340208462880, 1413380381699497200, 270316008395632253340, 59800308109377016336155, 15151722444639718679892150, 4359147487054262623576455600
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Colin Defant, Descents in t-Sorted Permutations, arXiv:1904.02613 [math.CO], 2019.
- Colin Defant, Michael Engen, and Jordan A. Miller, Stack-sorting, set partitions, and Lassalle's sequence, arXiv:1809.01340 [math.CO], 2018.
- Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020. See p. 37.
- Matthieu Josuat-Verges, Cumulants of the q-semicircular law, Tutte polynomials, and heaps, arXiv:1203.3157 [math.CO], 2012.
- Michel Lassalle, Catalan numbers and a new integer sequence, arXiv:1009.4225 [math.CO], 2010-2012.
- Michel Lassalle, Two integer sequences related to Catalan numbers, Journal of Combinatorial Theory, Series A, Volume 119, Issue 4, May 2012, Pages 923-935.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
Crossrefs
Programs
-
Maple
A000108 := proc(n) binomial(2*n,n)/(1+n) ; end proc: A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ; %*(-1)^(n-1) ; end if; end proc: # R. J. Mathar, Apr 16 2011
-
Mathematica
nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n,n]/(n+1) + Sum[(-1)^j*Binomial[2n-1,2j-1]*a[[j]]* Binomial[2*(n-j),n-j]/(n-j+1),{j,1,n-1}]),{n,2,nmax}]; a (* Vaclav Kotesovec, Feb 28 2014 *)
Formula
a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - R. J. Mathar, Apr 17 2011, corrected by Vaclav Kotesovec, Feb 28 2014
E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - Sergei N. Gladkovskii, Dec 28 2011
a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - Vaclav Kotesovec, added Feb 28 2014, updated Mar 01 2014
Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - Colin Defant, Sep 06 2018
Comments