cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180921 a(n) is the square root of the sum of the cubes of the b(n) consecutive integers starting from b(n), where b(n) = A180920.

Original entry on oeis.org

1, 2079, 7876385, 30254180671, 116236127290689, 446579144331338591, 1715756954644453458529, 6591937773063166150358655, 25326223208345427203876398721, 97303342974524967600723097592479, 373839418381901692962342398114034081
Offset: 1

Views

Author

Vladimir Pletser, Sep 24 2010

Keywords

Comments

Colin Barker's linear recurrence conjecture confirmed, see A180920. - Ray Chandler, Jan 12 2024

Examples

			a(3) = 2017*(31*(2079/33) + 8*sqrt(15*((2079/33)^2) + 1)).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3904,-238206,3904,-1},{1,2079,7876385,30254180671},20] (* Harvey P. Dale, Apr 27 2025 *)
  • PARI
    default(realprecision, 1000);
    b=vector(20, n, if(n==1, t=1, t=round(31*t-14+8*((3*t-1)*(5*t-3))^(1/2))));
    vector(#b, n, if(n==1, t=1, t=round(b[n]*(31*(t/b[n-1])+8*(15*((t/b[n-1])^2)+1)^(1/2))))) \\ Colin Barker, Feb 19 2015

Formula

a(n) = b(n)*(31*(a(n-1)/b(n-1)) + 8*sqrt(15*((a(n-1)/b(n-1))^2) + 1)) where b(n) = A180920(n).
From Colin Barker, Feb 19 2015: (Start)
a(n) = 3904*a(n-1) - 238206*a(n-2) + 3904*a(n-3) - a(4).
G.f.: x*(x+1)*(x^2-1826*x+1) / ((x^2-3842*x+1)*(x^2-62*x+1)). (End)
a(n) = Sqrt(A240137(A180920(n))). - Ray Chandler, Jan 12 2024

Extensions

Name clarified by Jon E. Schoenfield, Mar 11 2022