A180926 Numbers k such that 6*k and 10*k are triangular numbers.
0, 1, 63, 3906, 242110, 15006915, 930186621, 57656563588, 3573776755836, 221516502298245, 13730449365735355, 851066344173293766, 52752382889378478138, 3269796672797292350791, 202674641330542747270905
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (63,-63,1).
Programs
-
Mathematica
a[1] = 0; a[n_] := a[n] = (62 a[n - 1] + 1 + Sqrt[(48 a[n - 1] + 1)*(80 a[n - 1] + 1)])/2; Array[a, 14] (* Robert G. Wilson v, Sep 27 2010 *) Rest[CoefficientList[Series[-x^2/((x - 1) (x^2 - 62 x + 1)), {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *) LinearRecurrence[{63,-63,1},{0,1,63},20] (* Harvey P. Dale, Dec 25 2019 *)
-
PARI
isok(n) = ispolygonal(6*n, 3) && ispolygonal(10*n, 3); \\ Michel Marcus, Jun 25 2014
Formula
a(n) = (62*a(n-1) + 1 + ((48*a(n-1) + 1)*(80*a(n-1) + 1))^(1/2))/2 with a(1)=0.
G.f.: -x^2 / ((x-1)*(x^2-62*x+1)). - Colin Barker, Jun 25 2014
a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) - (-4+sqrt(15))*(31+8*sqrt(15))^n)/480. - Colin Barker, Mar 03 2016
Extensions
a(8) onwards from Robert G. Wilson v, Sep 27 2010
Comments