cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181044 The number of ways to compute the determinant of an n X n matrix using cofactor expansion.

Original entry on oeis.org

1, 4, 384, 173946175488, 1592481597212922365761871004823571903636713118111555911680
Offset: 1

Views

Author

Robert A. Beeler, Sep 30 2010

Keywords

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 6.1.9 at p. 153.

Crossrefs

Cf. A363767.

Programs

  • Mathematica
    a[1]=1; a[n_]:=2n a[n-1]^n; Array[a,5] (* Stefano Spezia, Jun 20 2023 *)
  • PARI
    a(n) = if (n==1, 1, 2*n*a(n-1)^n); \\ Michel Marcus, Jun 21 2023

Formula

a(n) = 2*n*(a(n-1))^n.
a(n) = 2*2^n*2^(n*(n-1))*2^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3)*n*(n-1)^n*(n-2)^(n*(n-1))*(n-3)^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3).
From Robert A. Beeler, Oct 11 2010: (Start)
4^(n!*(e-2)) < a(n) < (2*e)^(n!*(e-2)).
a(n) ~ A363767^n!. (End)