A181071 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^(k+1) * n/(n-k).
1, 3, 7, 15, 66, 357, 1891, 20559, 257605, 3436908, 96199478, 2734569969, 96260508267, 6820892444439, 438665726703387, 43006289605790127, 7366025744010911808, 1099005822684238964181, 309398207716948885643749
Offset: 1
Keywords
Examples
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 66*x^5/5 + ... which equals the series: L(x) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 + (1+ 3^2*x + 3^3*x^2 + x^3)*x^3/3 + (1+ 4^2*x + 6^3*x^2 + 4^4*x^3 + x^5)*x^4/4 + (1+ 5^2*x + 10^3*x^2 + 10^4*x^3 + 5^5*x^4 + x^5)*x^5/5 + (1+ 6^2*x + 15^3*x^2 + 20^4*x^3 + 15^5*x^4 + 6^6*x^5 + x^6)*x^6/6 + ... Exponentiation yields the g.f. of A181070: exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 23*x^5 + 88*x^6 + 379*x^7 + 3044*x^8 + ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..122
Programs
-
Magma
[(&+[Binomial(n-j,j)^(j+1)*(n/(n-j)): j in [0..Floor(n/2)]]): n in [1..20]]; // G. C. Greubel, Apr 04 2021
-
Mathematica
Table[Sum[Binomial[n-k,k]^(k+1) n/(n-k),{k,0,Floor[n/2]}],{n,20}] (* Harvey P. Dale, Sep 25 2020 *)
-
PARI
a(n)=sum(k=0, n\2, binomial(n-k, k)^(k+1)*n/(n-k))
-
PARI
{a(n)=n*polcoeff(sum(m=1, n, sum(k=0, m, binomial(m,k)^(k+1)*x^k)*x^m/m)+x*O(x^n), n)}
-
Sage
[sum( binomial(n-k, k)^(k+1)*(n/(n-k)) for k in (0..n//2)) for n in (1..20)] # G. C. Greubel, Apr 04 2021
Formula
Logarithmic derivative of A181070.