A181089 Triangle T(n, k) = A060821(n,k) + A060821(n,n-k), read by rows.
2, 2, 2, 2, 0, 2, 8, -12, -12, 8, 28, 0, -96, 0, 28, 32, 120, -160, -160, 120, 32, -56, 0, 240, 0, 240, 0, -56, 128, -1680, -1344, 3360, 3360, -1344, -1680, 128, 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936, 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512
Offset: 0
Examples
Triangle begins as: 2; 2, 2; 2, 0, 2; 8, -12, -12, 8; 28, 0, -96, 0, 28; 32, 120, -160, -160, 120, 32; -56, 0, 240, 0, 240, 0, -56; 128, -1680, -1344, 3360, 3360, -1344, -1680, 128; 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936; 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
(* First program *) p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]]; Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 15}]] (* edited by G. C. Greubel, Apr 04 2021 *) (* Second program *) A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0]; T[n_, k_]:= A060821[n, k] +A060821[n, n-k]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 04 2021 *)
-
Sage
def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0 def T(n,k): return A060821(n, k) + A060821(n, n-k) flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 04 2021