A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.
1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1
Examples
From _Andrew Howroyd_, Jul 16 2018: (Start) Triangle begins: 1; 10, 6; 33, 24, 24; 88, 48, 72, 48; 145, 120, 120, 120, 120; 330, 144, 240, 198, 240, 144; 385, 336, 336, 336, 336, 336, 336; 736, 384, 576, 384, 672, 384, 576, 384; 945, 648, 648, 864, 648, 648, 864, 648, 648; ... (End)
Links
- Erdos Pal, Rows n=1..100 of triangle, flattened
- Richard P. Brent and Brendan D. McKay, Determinants and ranks of random matrices over Z_m, Discrete Mathematics 66 (1987) pp. 35-49.
- A. K. Gupta, Generalized hidden hexagon squares, The Fibonacci Quarterly, Vol 12, Number 1, Feb.1974, pp. 45-46.
- S. Hitotumatu, D. Sato, Star of David theorem (I), The Fibonacci Quarterly, Vol 13, Number 1, Feb.1975, p. 70.
Programs
-
Other
(* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
-
PARI
S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))} T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v} for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018
Formula
T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018
Extensions
Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018
Comments