A181119 Number of transpose-complementary plane partitions of n.
1, 2, 84, 81796, 1844536720, 962310111888300, 11608208114358751650000, 3236574482779383546336417240000, 20853456581643133066208521560263633137920, 3104385823530881109001458753652585998600603921849920, 10676554307318599842868990948461304923921623250562199975300214736
Offset: 0
Examples
When n=2, there are two transpose-complementary plane partitions, [1 1] and [2 1], both of whose transpose and complement is equal to themselves. [1 1] [1 0]
Links
- R. P. Stanley, Symmetries of Plane Partitions, J. Comb. Theory Ser. A 43 (1986), 103-113.
- P. J. Taylor, Counting distinct dimer hex tilings, Preprint, 2015.
- Wikipedia, Plane partition
Programs
-
Mathematica
Table[Binomial[3n-1,n]Product[(2n+i+j+1)/(i+j+1),{i,1,2n-2}, {j,i,2n-2}], {n,0,10}] (* Harvey P. Dale, Jan 27 2012 *)
-
PARI
a(n) = binomial(3*n-1,n)*prod(i=1,2*n-2,prod(j=i,2*n-2,(2*n+i+j+1)/(i+j+1))); \\ Michel Marcus, Jun 18 2015
Formula
a(n) = binomial(3n-1,n)*Product(i=1..2n-2,Product(j=i..2n-2,(2n+i+j+1)/(i+j+1))).
a(n) ~ exp(1/24) * 3^(9*n^2 - 3*n/2 - 1/24) / (sqrt(A) * n^(1/24) * 2^(12*n^2 - n - 1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Feb 28 2015
Comments