A181138 Least positive integer k such that n^2 + k is a cube.
1, 7, 4, 18, 11, 2, 28, 15, 61, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 271, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11
Offset: 0
Examples
a(11) = 4 because 11^2 + k is never a cube for k < 4, but 11^2 + 4 = 5^3. - _Bruno Berselli_, Jan 29 2013
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000 (Corrected Jan 19 2019)
Programs
-
Magma
S:=[]; k:=1; for n in [0..60] do while not IsPower(n^2+k,3) do k:=k+1; end while; Append(~S, k); k:=1; end for; S; // Bruno Berselli, Jan 29 2013
-
Mathematica
Table[(1 + Floor[n^(2/3)])^3 - n^2, {n, 100}] (* Zak Seidov, Mar 26 2013 *)
-
PARI
A181138(n)=(sqrtnint(n^2,3)+1)^3-n^2 \\ Charles R Greathouse IV, Mar 26 2013
Formula
a(n) << n^(4/3). - Charles R Greathouse IV, Mar 26 2013
Extensions
Extended to a(0)=1 by M. F. Hasler, Sep 26 2013
Comments