cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A179386 Records of minima of A154333, difference of a cube minus the next smaller square.

Original entry on oeis.org

2, 4, 7, 26, 28, 47, 49, 60, 63, 174, 207, 307, 7670, 15336, 18589, 22189, 37071, 44678, 63604, 64432
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" here means values A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently, the range of m(x) = min{ A154333(x') ; x' > x }. - M. F. Hasler, Sep 27 2013
For the associated x values see A179387 (and example).
For the associated values y=max{ y | y^2 < x^3 }, see A179388.
From Artur Jasinski, Jul 13 2010: (Start)
Theorem (*Artur Jasinski*)
For any positive number x >= A179387(n) the distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: The number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable, therefore such x can't exist.
(End)
An equivalent theorem is the following (*Artur Jasinski*): For any positive number x >= 1+A179387(n) distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n+1). - Artur Jasinski, Aug 11 2010
Also: The range of b(n) = min { A181138(m) | m>n }. - M. F. Hasler, Sep 26 2013
Indeed, if k=A154333(x) is a member if this sequence A179386, then also k=A181138(y) for the corresponding y, and since there is no larger x' such that x'^3-y'^3 <= k, there cannot be a larger y' such that k=A181138(y') (since this y' would require a corresponding x' > x). Conversely, the same reasoning holds for "records of minima" in A181138. - M. F. Hasler, Sep 26 and Sep 28 2013

Examples

			For numbers x > 32, A154333(x) > 7.
For numbers x > 35, A154333(x) > 26.
For numbers x > 37, A154333(x) > 28.
For numbers x > 63, A154333(x) > 47.
For numbers x > 65, A154333(x) > 49.
For numbers x > 136, A154333(x) > 60.
For numbers x > 568, A154333(x) > 63.
For numbers x > 5215, A154333(x) > 174.
For numbers x > 367806, A154333(x) > 207.
For numbers x > 939787, A154333(x) > 307.
		

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; min = 10^100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10^100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

Extensions

Edited by M. F. Hasler, Sep 27 2013

A179388 Values y for records of minima of positive distances d = A179386(n) = A154333(x) = x^3 - y^2.

Original entry on oeis.org

5, 11, 181, 207, 225, 500, 524, 1586, 13537, 376601, 223063347, 911054064, 16073515093, 22143115844, 29448160810, 1661699554612, 2498973838515, 26588790747913, 27582731314539, 178638660622364
Offset: 1

Views

Author

Artur Jasinski, Jul 12 2010, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" means values A179386(n)=A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently A181138(y) such that A181138(y') > A181138(y) for all y' > y. See the main entry A179386 for all further considerations. - M. F. Hasler, Sep 30 2013
For d values see A179386, for x values see A179387.
Theorem (Artur Jasinski):
For any positive number x >= A179387(n), the distance between the cube of x and the square of any y (with x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: Because number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable there can't exist any such x (or the related y).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10100, {n, 1, max}]; vecx = Table[10100, {n, 1, max}]; vecy = Table[10100, {n, 1, max}]; len = 1; min = 10100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (*Artur Jasinski*)

Formula

A179388(n) = sqrt(A179387(n)^3 - A179386(n)).

Extensions

Edited by M. F. Hasler, Sep 30 2013

A077116 n^3 - A065733(n).

Original entry on oeis.org

0, 0, 4, 2, 0, 4, 20, 19, 28, 0, 39, 35, 47, 81, 40, 11, 0, 13, 56, 135, 79, 45, 39, 67, 135, 0, 152, 83, 48, 53, 104, 207, 7, 216, 100, 26, 0, 28, 116, 270, 496, 277, 104, 546, 503, 524, 615, 139, 368, 0, 391, 155, 732, 652, 648, 726, 55, 293, 631, 170, 704
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) = 0 for n = m^2. - Zak Seidov, May 11 2007
It has been asked whether some primes do not occur in this sequence. It seems indeed that primes 3, 5, 17, 23, 29, 31, 37, 41, 43, 59, 61,... do not occur, primes 2, 7, 11, 13, 19, 47, 53, 67, 79, 83,... do. For further investigations, see A087285 = the range of this sequence, and also the related sequences A229618 = range of A181138, and A165288. - M. F. Hasler, Sep 26 2013 and Oct 05 2013

Examples

			A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000 - 961 = 39.
		

Crossrefs

Programs

Formula

a(n) = A154333(n) unless n is a square or, equivalently, a(n)=0. - M. F. Hasler, Oct 05 2013
a(n) = A053186(n^3). - R. J. Mathar, Jul 12 2016

A087285 Possible differences between a cube and the next smaller square.

Original entry on oeis.org

2, 4, 7, 11, 13, 15, 19, 20, 26, 28, 35, 39, 40, 45, 47, 48, 49, 53, 55, 56, 60, 63, 67, 74, 76, 79, 81, 83, 100, 104, 107, 109, 116, 127, 135, 139, 146, 147, 148, 150, 152, 155, 170, 174, 180, 184, 186, 191, 193, 200, 207, 212, 215, 216, 233, 235, 242, 244, 249
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

Sequence and program were provided by Ralf Stephan Aug 28 2003.
Comment from David W. Wilson, Jan 05 2009: I believe there is an algorithm for solving x^3 - y^2 = k, which should have a finite number of solutions for any k. That means that we should in principle be able to compute this sequence.
Up to the initial 0 in A165288, these two sequences appear to be the same, but according to its current definition, A165288 should be the same as the (different) sequence A229618 = the range of the sequence A181138 (= least k>0 such that n^2+k is a cube): If n^2+k=y^3 is the smallest cube above n^2, then n^2 is not necessarily the largest square below y^3. E.g., 18 is in A181138 and A229618, since 9+18=27 is the least cube above 9=3^2, but 25=5^2 is the largest square below 27. - M. F. Hasler, Oct 05 2013

Examples

			a(1)=2 because the next smaller square below 3^3=27 is 5^2=25.
		

References

Crossrefs

Programs

  • PARI
    v=vector(200):for(n=2,10^7,t=n^3:s=sqrtint(t)^2: if(s==t,s=sqrtint(t-1)^2):tt=t-s: if(tt>0&&tt<=200&&!v[tt],v[tt]=n)):for(k=1,200,if(v[k],print1(k",")))

A070923 a(n) is the smallest value >= 0 of the form x^3 - n^2.

Original entry on oeis.org

0, 0, 4, 18, 11, 2, 28, 15, 0, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 0, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11, 615, 496
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n) = 0 if n is a cube (i.e., n is in A000578(k)).
a(n) = A181138(n) if n is not a cube. - Zak Seidov, Mar 26 2013

Crossrefs

Formula

a(n) = ceiling(n^(2/3))^3 - n^2 = A077107(n)-n^2.

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 07 2022

A106265 Numbers a > 0 such that the Diophantine equation a + b^2 = c^3 has integer solutions b and c.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 64, 67, 71, 72, 74, 76, 79, 81, 83, 87, 89, 95, 100, 104, 106, 107, 109, 112, 116, 118, 121, 124, 125, 126, 127, 128, 135, 139, 143, 146, 147, 148, 150, 151, 152, 153
Offset: 1

Views

Author

Zak Seidov, Apr 28 2005

Keywords

Comments

A given a(n) can have multiple solutions with distinct (b,c), e.g., a=4 with b=2, c=2 (4 + 2^2 = 2^3) or with b=11, c=5 (4 + 11^2 = 5^3). (See also A181138.) Sequences A106266 and A106267 list the minimal values. - M. F. Hasler, Oct 04 2013
The cubes A000578 = (1, 8, 27, 64, ...) form a subsequence of this sequence, corresponding to b=0, a=c^3. If b=0 is excluded, these terms are not present, except for a few exceptions, a = 216, 343, 12167, ... (6^3 + 28^2 = 10^3, 7^3 + 13^2 = 8^3, 23^3 + 588^2 = 71^3, ...), cf. A038597 for the possible b-values. - M. F. Hasler, Oct 05 2013
This is the complement of A081121. The values do indeed correspond to solutions listed in Gebel's file. - M. F. Hasler, Oct 05 2013
B-file corrected following a remark by Alois P. Heinz, May 24 2019. A double-check would be appreciated in view of two values that were missing, for unknown reasons, in the earlier version of the b-file. - M. F. Hasler, Aug 10 2024

Examples

			a = 1,2,4,7,8,11,13,15,18,19,20,23,25,26,27,28,35,39,40,44,45,47,48,49,53, ...
b = 0,5,2,1,0, 4,70, 7, 3,18,14, 2,10, 1, 0, 6,36, 5,52, 9,96,13,4,524,26, ...
c = 1,3,2,2,2, 3,17, 4, 3, 7, 6, 3, 5, 3, 3, 4,11, 4,14, 5,21, 6, 4,65, 9, ...
Here are the values grouped together:
{{1, 0, 1}, {2, 5, 3}, {4, 2, 2}, {7, 1, 2}, {8, 0, 2}, {11, 4, 3}, {13, 70, 17}, {15, 7, 4}, {18, 3, 3}, {19, 18, 7}, {20, 14, 6}, {23, 2, 3}, {25, 10, 5}, {26, 1, 3}, {27, 0, 3}, {28, 6, 4}, {35, 36, 11}, {39, 5, 4}, {40, 52, 14}, {44, 9, 5}, {45, 96, 21}, {47, 13, 6}, {48, 4, 4}, {49, 524, 65}, {53, 26, 9}, {54, 17, 7}, {55, 3, 4}, {56, 76, 18}, {60, 2, 4}, {61, 8, 5}, {63, 1, 4}, {64, 0, 4}, {67, 110, 23}, {71, 21, 8}, ... }
a(2243) = 10000 = 25^3 - 75^2. - _M. F. Hasler_, Oct 05 2013, index corrected Aug 10 2024
a(136) = 366 = 11815^3 - 1284253^2 (has c/a(n) ~ 32.3); a(939) = 3607 = 244772^3 - 121099571^2 (has c/a(n) ~ 67.9); a(1090) = 4265 = 84521^3 - 24572364^2 (has c/a(n) ~ 19.8). - _M. F. Hasler_, Aug 10 2024
		

Crossrefs

Cf. A106266, A106267 for respective minimal values of b and c.
Cf. A023055: (Apparent) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2); A076438: n which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1; A076440: n which appear to have a unique representation as the difference of two perfect powers and one of those powers is odd; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1 and that solution has odd x or odd y (or both odd); A075772: Difference between n-th perfect power and the closest perfect power, etc.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n^(1/3) + 1]}, While[k < 10^6 && !IntegerQ[ Sqrt[k^3 - n]], k++ ]; If[k == 10^6, 0, k]]; Select[ Range[ 154], f[ # ] != 0 &] (* Robert G. Wilson v, Apr 28 2005 *)
  • PARI
    select( {is_A106265(a, L=99)=for(c=sqrtnint(a, 3), (a+9)*L, issquare(c^3-a, &b) && return(c))}, [1..199]) \\ The function is_A106265 returns 0 if n isn't a term, or else the c-value (A106267) which can't be zero if n is a term. The L-value can be used to increase the search limit but so far no instance is known that requires L>68. - M. F. Hasler, Aug 10 2024

Formula

a(n) = A106267(n)^3 - A106266(n)^2.

Extensions

More terms from Robert G. Wilson v, Apr 28 2005
Definition corrected, solutions with b=0 added by M. F. Hasler, Sep 30 2013

A229618 Numbers that are the distance between a square and the next larger cube.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 15, 18, 19, 20, 25, 26, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 67, 71, 72, 74, 76, 79, 81, 83, 87, 100, 104, 106, 107, 109, 112, 116, 118, 126, 127, 128, 135, 139, 143
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2013

Keywords

Comments

This is the range of the sequence A181138 (= least k>0 such that n^2+k is a cube). Note that this is not the same as A087285 = range of A077116 = difference between a cube and the next smaller square: If n^2+k = y^3 is the smallest cube above n^2, then n^2 is not necessarily the largest square below y^3, e.g., 9+18 = 27 = 3^3 is the least cube above 9 = 3^2, but 25 = 5^2 is the largest square below 27. Therefore the number 18 is in this sequence, but not in A087285.
See A077116 and A181138 and A179386 for motivations.
Apart from the leading 1, this is a subsequence of A106265, which does not require the square to be the next smaller one: For example, 23 = 27 - 4 = 3^3 - 2^2 is in A106265 but not in this sequence. A165288 is a subsequence of this one, except for the initial term.

Examples

			a(1) = 1 = 1^3-0^2 (but this is the only solution to y^3-x^2 = 1).
a(2) = 2 = 27-25 (= 3^3-5^2), and this is the only solution to y^3-x^2 = 2.
The number 3 is not in the sequence since there are no x, y > 0 such that y^3-x^2 = 3.
a(3) = 4 = 8-4 (= 2^3-2^2) = 125-121 (= 5^3-11^2); these are the only two solutions to y^3-x^2 = 4, for all x>11, the minimal positive y^3-x^2 is 7.
		

Crossrefs

Showing 1-7 of 7 results.