cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A071069 a(n) = min { A070923(k) | n^3 < k < (n+1)^3 }.

Original entry on oeis.org

2, 4, 11, 13, 7, 28, 47, 49, 74, 76, 60, 109, 146, 148, 191, 193, 207, 207, 233, 301, 362, 364, 63, 433, 506, 212, 587, 174, 674, 368, 503, 769, 866, 766, 971, 368, 1082, 1071, 1199, 1201, 1322, 648, 1144, 1453, 1586, 535, 508, 944, 991, 1478, 2027, 2029, 215
Offset: 1

Views

Author

Benoit Cloitre, May 26 2002

Keywords

Comments

Strong conjecture : for n>12, n^2/2n for any n. A simple application of the weak conjecture could be to determine if the equation x^3-y^2 = A (A integer) has no solution in integers. For example the equation x^3-y^2 = 5 would have no solution in integers since a(n)>5 for n>5 and from a direct calculus, A070923(k) is different from 5, k = 1^3 to 6^3.
The strong conjecture does not hold for n = 23, 26, 28, 30, 36, 42, 46, 47, 48, 49, ... - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004

Crossrefs

Programs

  • PARI
    for(n=1,21,s=1; while(sum(i=n^3+1,(n+1)^3-1,sign(ceil(i^(2/3))^3-i^2-s))==(n+1)^3-1-n^3,s++); print1(s,","))

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004

A077109 Duplicate of A070923.

Original entry on oeis.org

0, 0, 4, 18, 11, 2, 28, 15, 0, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 0, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47
Offset: 0

Views

Author

Keywords

A075847 Difference between n^2 and the largest cube <= n^2.

Original entry on oeis.org

0, 0, 3, 1, 8, 17, 9, 22, 0, 17, 36, 57, 19, 44, 71, 9, 40, 73, 108, 18, 57, 98, 141, 17, 64, 113, 164, 0, 55, 112, 171, 232, 24, 89, 156, 225, 296, 38, 113, 190, 269, 350, 36, 121, 208, 297, 388, 12, 107, 204, 303, 404, 507, 65, 172, 281, 392, 505, 620, 106, 225, 346
Offset: 0

Views

Author

Zak Seidov and Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n) = n^2 - A077106(n).
a(n) = 0 iff n = m^(6*k).
a(n) = 0 when n is a cube. See A070923.

Examples

			a(4)=8 because 4^2 - 2^3 = 8; a(9)=17 because 9^2 - 4^3 = 17.
A077106(20) = 343 = 7^3 is the largest cube <= 20^2 = 400, therefore a(20) = 400 - 343 = 57.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Oct 30 2008

A077110 Nearest integer cube to n^2.

Original entry on oeis.org

0, 1, 1, 8, 8, 27, 27, 64, 64, 64, 125, 125, 125, 125, 216, 216, 216, 343, 343, 343, 343, 512, 512, 512, 512, 729, 729, 729, 729, 729, 1000, 1000, 1000, 1000, 1000, 1331, 1331, 1331, 1331, 1331, 1728, 1728, 1728, 1728, 1728, 2197, 2197, 2197
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(10) = 125, as 125 = 5^3 is the nearest cube to 100 = 10^2.
		

Crossrefs

Cf. A002760 (Squares and cubes). - Zak Seidov, Oct 08 2015

Programs

  • Mathematica
    nic[n_]:=Module[{n2=n^2,s3,c1,c2},s3=Surd[n2,3];c1=Floor[s3]^3;c2= Ceiling[ s3]^3;If[n2-c1Harvey P. Dale, Jul 05 2015 *)
  • Python
    from sympy import integer_nthroot
    def A077110(n):
        n2 = n**2
        a = integer_nthroot(n2,3)[0]
        a2, a3 = a**3, (a+1)**3
        return a3 if a3+a2-2*n2 < 0 else a2 # Chai Wah Wu, Sep 24 2021

Formula

a(n) = if A075847(n) < A070923(n) then A077106(n) else A077107(n).

A181138 Least positive integer k such that n^2 + k is a cube.

Original entry on oeis.org

1, 7, 4, 18, 11, 2, 28, 15, 61, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 271, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11
Offset: 0

Views

Author

Jason Earls, Oct 06 2010

Keywords

Comments

a(n) = A070923(n) if n is not cube. Zak Seidov, Mar 26 2013
See A229618 for the range of this sequence. A179386 gives the range of b(n) = min{ a(m); m >= n }. The indices of jumps in this sequence are given in A179388 = { n | a(m)>a(n) for all m > n } = { 0, 5, 11, 181, 207, 225, 500, 524, 1586, ... }. - M. F. Hasler, Sep 26 2013

Examples

			a(11) = 4 because 11^2 + k is never a cube for k < 4, but 11^2 + 4 = 5^3. - _Bruno Berselli_, Jan 29 2013
		

Crossrefs

Programs

  • Magma
    S:=[];
    k:=1;
    for n in [0..60] do
       while not IsPower(n^2+k,3) do
            k:=k+1;
       end while;
       Append(~S, k);
       k:=1;
    end for;
    S;  // Bruno Berselli, Jan 29 2013
    
  • Mathematica
    Table[(1 + Floor[n^(2/3)])^3 - n^2, {n, 100}] (* Zak Seidov, Mar 26 2013 *)
  • PARI
    A181138(n)=(sqrtnint(n^2,3)+1)^3-n^2 \\ Charles R Greathouse IV, Mar 26 2013

Formula

a(n) << n^(4/3). - Charles R Greathouse IV, Mar 26 2013

Extensions

Extended to a(0)=1 by M. F. Hasler, Sep 26 2013

A077107 Least integer cube >= n^2.

Original entry on oeis.org

0, 1, 8, 27, 27, 27, 64, 64, 64, 125, 125, 125, 216, 216, 216, 343, 343, 343, 343, 512, 512, 512, 512, 729, 729, 729, 729, 729, 1000, 1000, 1000, 1000, 1331, 1331, 1331, 1331, 1331, 1728, 1728, 1728, 1728, 1728, 2197, 2197, 2197, 2197, 2197, 2744
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(20) = 512, as 512 = 8^3 is the least cube >= 400 = 20^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[Surd[n^2,3]]^3,{n,0,50}] (* Harvey P. Dale, Jan 02 2020 *)

Formula

a(n) - A070923(n) = n^2.
a(n) = A121536(n)^3. - Amiram Eldar, May 17 2025
a(n) = A048763(n^2). - Michel Marcus, May 17 2025

A070929 Smallest integer >= 0 of the form x^2 - n^3.

Original entry on oeis.org

0, 0, 1, 9, 0, 19, 9, 18, 17, 0, 24, 38, 36, 12, 65, 106, 0, 128, 97, 30, 100, 148, 168, 154, 100, 0, 113, 198, 249, 260, 225, 138, 356, 163, 297, 389, 0, 423, 353, 217, 9, 248, 441, 17, 80, 79, 8, 506, 297, 0, 316, 574, 17, 119, 145, 89, 784, 568, 252, 737, 225, 548
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n)=0 iff n is a square.

Examples

			A077115(10) = 1024 = 32^2 is the least square >= 10^3 = 1000, therefore a(10) = 1024 - 1000 = 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_]=Ceiling[n^(3/2)]^2-n^3;
    t1=Table[f[n], {n, 1, 90}]; t1 (* Clark Kimberling, Jan 30 2011 *)
  • PARI
    for(n=1,100,print1(ceil(n^(3/2))^2-n^3,","))

Formula

a(n) = ceiling(n^(3/2))^2 - n^3 = A077115(n) - n^3.

A077111 a(n) = A077110(n) - n^2.

Original entry on oeis.org

0, 0, -3, -1, -8, 2, -9, 15, 0, -17, 25, 4, -19, -44, 20, -9, -40, 54, 19, -18, -57, 71, 28, -17, -64, 104, 53, 0, -55, -112, 100, 39, -24, -89, -156, 106, 35, -38, -113, -190, 128, 47, -36, -121, -208, 172, 81, -12, -107, -204, 244, 143, 40, -65, -172
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).

Examples

			A077110(20)=343=7^3 is the nearest cube to 20^2=400, therefore a(20)=343-400=-57.
		

Crossrefs

Formula

a(n) = if A075847(n) < A070923(n) then -A075847(n) else A070923(n).

A121536 Smallest m such that m^3 >= n^2.

Original entry on oeis.org

0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19
Offset: 1

Views

Author

Zak Seidov, Aug 05 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[n^(2/3)],{n,1,100}]

Formula

a(n) = ceiling(n^(2/3)).
a(n) = (A070923(n)+n^2)^(1/3).
If n is a cube a(n) = A100196(n), otherwise a(n) = A100196(n)+1.
a(n) = A077107(n)^(1/3). - Amiram Eldar, May 17 2025

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, May 17 2025

A070959 First minimum value > 0 of the form x^3-k^2 when k > n^3.

Original entry on oeis.org

4, 4, 39, 13, 152, 28, 391, 49, 804, 76, 1439, 109, 2344, 148, 3567, 193, 5156, 244, 7159, 301, 9624, 364, 12599, 433, 16132, 508, 20271, 589, 25064, 676, 30559, 769, 36804, 868, 43847, 973, 51736, 1084, 60519, 1201, 70244, 1324, 80959, 1453, 92712
Offset: 1

Views

Author

Benoit Cloitre, May 25 2002

Keywords

Examples

			Let n=2 then n^3=8 and A070923(9)= 44, A070923(10)=25, A070923(11)=4, A070923(12)=72 so the first minimum is 4, hence a(2)=4
		

Crossrefs

Cf. A070923.

Programs

  • PARI
    for(n=1,100,s=n^3+1; while(ceil(s^(2/3))^3-s^2>ceil((s+1)^(2/3))^3-(s+1)^2,s++); print1(ceil(s^(2/3))^3-s^2,","))

Formula

Let k be the smallest integer>n^3 such that A070923(k-1)> A070923(k) and such that A070923(k) < A070923(k+1), then a(n)= A070923(k); for n>=1 a(2n-1) = 8n^3-9n^2+6n-1, a(2n)=3n^2+1.
From Chai Wah Wu, Jul 27 2020: (Start)
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n > 8.
G.f.: x*(-x^7 + x^6 + 20*x^4 - 3*x^3 + 23*x^2 + 4*x + 4)/((x - 1)^4*(x + 1)^4). (End)
Showing 1-10 of 10 results.