cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077116 n^3 - A065733(n).

Original entry on oeis.org

0, 0, 4, 2, 0, 4, 20, 19, 28, 0, 39, 35, 47, 81, 40, 11, 0, 13, 56, 135, 79, 45, 39, 67, 135, 0, 152, 83, 48, 53, 104, 207, 7, 216, 100, 26, 0, 28, 116, 270, 496, 277, 104, 546, 503, 524, 615, 139, 368, 0, 391, 155, 732, 652, 648, 726, 55, 293, 631, 170, 704
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) = 0 for n = m^2. - Zak Seidov, May 11 2007
It has been asked whether some primes do not occur in this sequence. It seems indeed that primes 3, 5, 17, 23, 29, 31, 37, 41, 43, 59, 61,... do not occur, primes 2, 7, 11, 13, 19, 47, 53, 67, 79, 83,... do. For further investigations, see A087285 = the range of this sequence, and also the related sequences A229618 = range of A181138, and A165288. - M. F. Hasler, Sep 26 2013 and Oct 05 2013

Examples

			A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000 - 961 = 39.
		

Crossrefs

Programs

Formula

a(n) = A154333(n) unless n is a square or, equivalently, a(n)=0. - M. F. Hasler, Oct 05 2013
a(n) = A053186(n^3). - R. J. Mathar, Jul 12 2016

A070923 a(n) is the smallest value >= 0 of the form x^3 - n^2.

Original entry on oeis.org

0, 0, 4, 18, 11, 2, 28, 15, 0, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 0, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11, 615, 496
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n) = 0 if n is a cube (i.e., n is in A000578(k)).
a(n) = A181138(n) if n is not a cube. - Zak Seidov, Mar 26 2013

Crossrefs

Formula

a(n) = ceiling(n^(2/3))^3 - n^2 = A077107(n)-n^2.

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 07 2022

A077118 Nearest integer square to n^3.

Original entry on oeis.org

0, 1, 9, 25, 64, 121, 225, 361, 529, 729, 1024, 1296, 1764, 2209, 2704, 3364, 4096, 4900, 5776, 6889, 7921, 9216, 10609, 12100, 13924, 15625, 17689, 19600, 21904, 24336, 26896, 29929, 32761, 36100, 39204, 42849, 46656, 50625, 54756, 59536
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(5)=121, as 121=11^2 is the nearest square to 125=5^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Sqrt[n^3]]^2, {n, 0, 39}] (* Alonso del Arte, Dec 07 2011, based on Artur Jasinski's program for A077119 *)
  • Python
    from math import isqrt
    def A077118(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2 # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then A065733(n) else A077115(n).
a(n) = A002821(n)^2. - Chai Wah Wu, Jul 30 2022

A077119 a(n) = A077118(n) - n^3.

Original entry on oeis.org

0, 0, 1, -2, 0, -4, 9, 18, 17, 0, 24, -35, 36, 12, -40, -11, 0, -13, -56, 30, -79, -45, -39, -67, 100, 0, 113, -83, -48, -53, -104, 138, -7, 163, -100, -26, 0, -28, -116, 217, 9, 248, -104, 17, 80, 79, 8, -139, 297, 0, 316, -155, 17, 119, 145, 89, -55
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).
Values d=x^3-y^2 of extremal points of elliptic Mordell curves. Definition for extremal points see A200656. Each value x has only one value of distance d when coordinate x is extremal point, but for many fixed distances d, the elliptic curve has more than 1 extremal point. - Artur Jasinski, Nov 30 2011
Theorem (Artur Jasinski): If a(n)>0 then a(n)<(4n^(3/2)-1)/4 for every n. If a(n)<0 then a(n)>(-4n^(3/2)-1)/4 for every n. a(n)=0 then n is perfect square. - Artur Jasinski, Dec 08 2011

Examples

			A077118(10)=1024=32^2 is the nearest square to 10^3=1000, therefore a(10)=1024-1000=24.
		

Crossrefs

|a(n)| = A002938(n).

Programs

  • Magma
    [Round(Sqrt(n^3))^2-n^3: n in [0..60]]; // Vincenzo Librandi, Mar 24 2015
    
  • Maple
    A077119 := proc(n)
        (round( sqrt(n^3) ))^2-n^3 ;
    end proc: # R. J. Mathar, Jan 18 2021
  • Mathematica
    Table[Round[Sqrt[x^3]]^2 - x^3, {x, 0, 100}]  (* Artur Jasinski, Nov 30 2011 *)
  • Python
    from math import isqrt
    def A077119(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2-k # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then -A077116(n) else A070929(n).

A077115 Least integer square >= n^3.

Original entry on oeis.org

0, 1, 9, 36, 64, 144, 225, 361, 529, 729, 1024, 1369, 1764, 2209, 2809, 3481, 4096, 5041, 5929, 6889, 8100, 9409, 10816, 12321, 13924, 15625, 17689, 19881, 22201, 24649, 27225, 29929, 33124, 36100, 39601, 43264, 46656, 51076, 55225, 59536
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(10) = 1024, as 1024 = 32^2 is the least square >= 1000 = 10^3.
		

Crossrefs

Programs

  • Magma
    [Ceiling(n^(3/2))^2: n in [0..50]]; // Vincenzo Librandi, Feb 17 2015
  • Mathematica
    lis[n_]:=Module[{c=Sqrt[n^3]},If[IntegerQ[c],c^2,(Floor[c]+1)^2]]; Array[lis,40,0] (* Harvey P. Dale, Jan 22 2013 *)

Formula

a(n) - A070929(n) = n^3.
a(n) = ceiling(n^(3/2))^2. - Benoit Cloitre, Nov 01 2002
a(n) = A185549(n)^2. - Amiram Eldar, May 17 2025
a(n) = A048761(n^3). - Michel Marcus, May 17 2025

A233422 Numbers n such that m - n^3 is a square, where m is the least square above n^3.

Original entry on oeis.org

0, 2, 3, 6, 12, 20, 24, 30, 40, 42, 56, 60, 68, 75, 78, 84, 87, 120, 126, 160, 180, 248, 264, 270, 273, 308, 312, 318, 330, 336, 351, 360, 396, 564, 570, 588, 615, 620, 630, 635, 720, 738, 780, 840, 912, 1008, 1016, 1032, 1284, 1308, 1320, 1334, 1344, 1404, 1540, 1617
Offset: 1

Views

Author

Alex Ratushnyak, Dec 09 2013

Keywords

Comments

Numbers n such that A070929(n) is a nonzero square.
The sequence of cubes a(n)^3 begins: 0, 8, 27, 216, 1728, 8000, 13824, 27000, 64000, 74088, 175616, 216000, 314432, ...
The sequence of m's begins: 1, 9, 36, 225, 1764, 8100, 13924, 27225, 64009, 74529, 176400, 216225, 314721, ...
The sequence of square roots of these m's begins: 1, 3, 6, 15, 42, 90, 118, 165, 253, 273, 420, 465, 561, 650, 689, 770, 812, ...
The sequence of squares m-n^3 begins: 1, 1, 9, 9, 36, 100, 100, 225, 9, 441, 784, 225, 289, 625, 169, 196, 841, ...
The sequence of their square roots begins: 1, 1, 3, 3, 6, 10, 10, 15, 3, 21, 28, 15, 17, 25, 13, 14, 29, 35, 43, 24, ... (note the first 12 terms are triangular numbers, A000217).

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Module[{c=n^3,m},m=(Floor[Sqrt[c]]+1)^2;IntegerQ[Sqrt[m-c]]];Select[Range[0,1650],fQ] (* Harvey P. Dale, Jan 03 2024 *)
  • PARI
    is(n)=issquare((sqrtint(n=n^3)+1)^2-n) \\ Charles R Greathouse IV, Dec 09 2013
  • Python
    from math import isqrt
    def isSquare(a):
      sr = isqrt(a)
      return (a==sr*sr)
    for n in range(77777):
      n3 = n*n*n
      a = isqrt(n3)+1
      if isSquare(a*a-n3):  print(n, end=', ')
    
Showing 1-6 of 6 results.