cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A077116 n^3 - A065733(n).

Original entry on oeis.org

0, 0, 4, 2, 0, 4, 20, 19, 28, 0, 39, 35, 47, 81, 40, 11, 0, 13, 56, 135, 79, 45, 39, 67, 135, 0, 152, 83, 48, 53, 104, 207, 7, 216, 100, 26, 0, 28, 116, 270, 496, 277, 104, 546, 503, 524, 615, 139, 368, 0, 391, 155, 732, 652, 648, 726, 55, 293, 631, 170, 704
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) = 0 for n = m^2. - Zak Seidov, May 11 2007
It has been asked whether some primes do not occur in this sequence. It seems indeed that primes 3, 5, 17, 23, 29, 31, 37, 41, 43, 59, 61,... do not occur, primes 2, 7, 11, 13, 19, 47, 53, 67, 79, 83,... do. For further investigations, see A087285 = the range of this sequence, and also the related sequences A229618 = range of A181138, and A165288. - M. F. Hasler, Sep 26 2013 and Oct 05 2013

Examples

			A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000 - 961 = 39.
		

Crossrefs

Programs

Formula

a(n) = A154333(n) unless n is a square or, equivalently, a(n)=0. - M. F. Hasler, Oct 05 2013
a(n) = A053186(n^3). - R. J. Mathar, Jul 12 2016

A077118 Nearest integer square to n^3.

Original entry on oeis.org

0, 1, 9, 25, 64, 121, 225, 361, 529, 729, 1024, 1296, 1764, 2209, 2704, 3364, 4096, 4900, 5776, 6889, 7921, 9216, 10609, 12100, 13924, 15625, 17689, 19600, 21904, 24336, 26896, 29929, 32761, 36100, 39204, 42849, 46656, 50625, 54756, 59536
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(5)=121, as 121=11^2 is the nearest square to 125=5^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Sqrt[n^3]]^2, {n, 0, 39}] (* Alonso del Arte, Dec 07 2011, based on Artur Jasinski's program for A077119 *)
  • Python
    from math import isqrt
    def A077118(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2 # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then A065733(n) else A077115(n).
a(n) = A002821(n)^2. - Chai Wah Wu, Jul 30 2022

A200656 Successive values x such that the Mordell elliptic curve x^3 - y^2 = d has extremal points with quadratic extension over the rationals.

Original entry on oeis.org

1942, 2878, 3862, 6100, 8380, 11512, 15448, 18694, 31228, 93844, 111382, 117118, 129910, 143950, 186145, 210025, 375376, 445528, 468472, 575800, 844596, 1002438, 1054062, 1193740, 1248412, 1326025, 1388545, 1501504, 1697908, 1782112, 1813660, 1873888, 1946737
Offset: 1

Views

Author

Artur Jasinski, Nov 20 2011

Keywords

Comments

Definition: Extremal points on the Mordell elliptic curve x^3 - y^2 = d are points (x,y) such that x^3 - round(sqrt(x^3))^2 = d. For values d for successive x independent of the extensions see A077119.
For y values see A200657.
For d values see A200658.
Definition: Secondary terms occur when there exist integers k such that A200656 is divisible by k^2, A200657 is divisible by k^3 and A200658 is divisible by k^6.
Terms free of such k are primary terms; see A201047. Secondary terms are, e.g., a(6)=a(2)*2^2, a(7)=a(3)*2^2, a(17)=a(10)*2^2, a(18)=a(11)*2^2, a(19)=a(12)*2^2, a(21)=a(10)*3^2.
For successive secondary terms, see A201048.
A200216 is a subsequence of this sequence.

Crossrefs

A070929 Smallest integer >= 0 of the form x^2 - n^3.

Original entry on oeis.org

0, 0, 1, 9, 0, 19, 9, 18, 17, 0, 24, 38, 36, 12, 65, 106, 0, 128, 97, 30, 100, 148, 168, 154, 100, 0, 113, 198, 249, 260, 225, 138, 356, 163, 297, 389, 0, 423, 353, 217, 9, 248, 441, 17, 80, 79, 8, 506, 297, 0, 316, 574, 17, 119, 145, 89, 784, 568, 252, 737, 225, 548
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n)=0 iff n is a square.

Examples

			A077115(10) = 1024 = 32^2 is the least square >= 10^3 = 1000, therefore a(10) = 1024 - 1000 = 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_]=Ceiling[n^(3/2)]^2-n^3;
    t1=Table[f[n], {n, 1, 90}]; t1 (* Clark Kimberling, Jan 30 2011 *)
  • PARI
    for(n=1,100,print1(ceil(n^(3/2))^2-n^3,","))

Formula

a(n) = ceiling(n^(3/2))^2 - n^3 = A077115(n) - n^3.

A077111 a(n) = A077110(n) - n^2.

Original entry on oeis.org

0, 0, -3, -1, -8, 2, -9, 15, 0, -17, 25, 4, -19, -44, 20, -9, -40, 54, 19, -18, -57, 71, 28, -17, -64, 104, 53, 0, -55, -112, 100, 39, -24, -89, -156, 106, 35, -38, -113, -190, 128, 47, -36, -121, -208, 172, 81, -12, -107, -204, 244, 143, 40, -65, -172
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).

Examples

			A077110(20)=343=7^3 is the nearest cube to 20^2=400, therefore a(20)=343-400=-57.
		

Crossrefs

Formula

a(n) = if A075847(n) < A070923(n) then -A075847(n) else A070923(n).

A002938 The minimal sequence from solving n^3 - m^2 = a(n).

Original entry on oeis.org

0, 1, 2, 0, 4, 9, 18, 17, 0, 24, 35, 36, 12, 40, 11, 0, 13, 56, 30, 79, 45, 39, 67, 100, 0, 113, 83, 48, 53, 104, 138, 7, 163, 100, 26, 0, 28, 116, 217, 9, 248, 104, 17, 80, 79, 8, 139, 297, 0, 316, 155, 17, 119, 145, 89, 55, 293, 252, 170, 225, 405, 184, 47, 0, 49
Offset: 1

Views

Author

Keywords

References

  • Marshall Hall, Jr., The Diophantine equation x^3-y^2=k, pp. 173-198 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A077119.

Programs

  • Mathematica
    f1[n_] := n - Floor[Sqrt[n]]^2;
    f2[n_] := Ceiling[Sqrt[n]]^2-n;
    Table[Min[f1[n^3], f2[n^3]], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2010 *)
  • PARI
    a(n)=vecmin(vector(ceil(n^(3/2)),i,abs(n^3-i^2)))

Formula

a(n) = |A077119(n+1)|.
a(n^2) = 0. - Benoit Cloitre, Aug 17 2002

Extensions

More terms from Benoit Cloitre, Aug 17 2002

A253181 Numbers n such that the distance between n^3 and the nearest square is less than n.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 25, 32, 35, 36, 37, 40, 43, 46, 49, 52, 56, 63, 64, 65, 81, 99, 100, 101, 109, 121, 136, 143, 144, 145, 152, 158, 169, 175, 190, 195, 196, 197, 225, 243, 255, 256, 257, 289, 312, 317, 323, 324, 325, 331, 336, 351, 356, 361, 366, 377
Offset: 1

Views

Author

Alex Ratushnyak, Mar 23 2015

Keywords

Comments

Distance can be zero, that is, cubes that are squares are included.
Numbers n such that A002938(n) < n.

Examples

			The distance between 5^3=125 and the nearest square 11^2=121 is less than 5, so 5 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    dnsQ[n_]:=Module[{n3=n^3,sr},sr=Sqrt[n3];Min[n3-Floor[sr]^2, Ceiling[ sr]^2- n3]Harvey P. Dale, Dec 23 2015 *)
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr + b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    for n in range(1000):
        cube = n*n*n
        r = isqrt(cube)
        sqr = r**2
        if cube-sqr < n or sqr+2*r+1-cube < n:  print(str(n), end=',')

A233149 a(n) = ((n^2+1)^3) - s, where s is the nearest square to (n^2+1)^3.

Original entry on oeis.org

-1, 4, -24, 13, -113, 28, -316, 49, -681, 76, -1256, 109, -2089, 148, -3228, 193, -4721, 244, -6616, 301, -8961, 364, -11804, 433, -15193, 508, -19176, 589, -23801, 676, -29116, 769, -35169, 868, -42008, 973, -49681, 1084, -58236, 1201, -67721, 1324, -78184, 1453, -89673, 1588, -102236, 1729, -115921, 1876
Offset: 1

Views

Author

Artur Jasinski, Dec 05 2013

Keywords

Examples

			Table of n, n^2, n^2+1, (n^2+1)^3, closest square, difference:
  1 1 2 8 9 -1
  2 4 5 125 121 4
  3 9 10 1000 1024 -24
  4 16 17 4913 4900 1
  ...
		

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[AppendTo[aa, (n^2 + 1)^3 - Round[Sqrt[(n^2 + 1)^3]]^2], {n, 1, 50}]; aa
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{-1,4,-24,13,-113,28,-316,49},50] (* Harvey P. Dale, Aug 09 2025 *)

Formula

a(n) = (n^2+1)^3 - (round(sqrt((n^2+1)^3)))^2.
Recurrence formula: a(n)= - a(n-2) + 4*a(n-4) - 6*a(n-6) + 4*a(n-8).
a(n) = -A077119(n^2+1). - R. J. Mathar, Jan 18 2021
a(2*n) = A056107(n). - R. J. Mathar, Jan 18 2021
Showing 1-8 of 8 results.