cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077119 a(n) = A077118(n) - n^3.

Original entry on oeis.org

0, 0, 1, -2, 0, -4, 9, 18, 17, 0, 24, -35, 36, 12, -40, -11, 0, -13, -56, 30, -79, -45, -39, -67, 100, 0, 113, -83, -48, -53, -104, 138, -7, 163, -100, -26, 0, -28, -116, 217, 9, 248, -104, 17, 80, 79, 8, -139, 297, 0, 316, -155, 17, 119, 145, 89, -55
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).
Values d=x^3-y^2 of extremal points of elliptic Mordell curves. Definition for extremal points see A200656. Each value x has only one value of distance d when coordinate x is extremal point, but for many fixed distances d, the elliptic curve has more than 1 extremal point. - Artur Jasinski, Nov 30 2011
Theorem (Artur Jasinski): If a(n)>0 then a(n)<(4n^(3/2)-1)/4 for every n. If a(n)<0 then a(n)>(-4n^(3/2)-1)/4 for every n. a(n)=0 then n is perfect square. - Artur Jasinski, Dec 08 2011

Examples

			A077118(10)=1024=32^2 is the nearest square to 10^3=1000, therefore a(10)=1024-1000=24.
		

Crossrefs

|a(n)| = A002938(n).

Programs

  • Magma
    [Round(Sqrt(n^3))^2-n^3: n in [0..60]]; // Vincenzo Librandi, Mar 24 2015
    
  • Maple
    A077119 := proc(n)
        (round( sqrt(n^3) ))^2-n^3 ;
    end proc: # R. J. Mathar, Jan 18 2021
  • Mathematica
    Table[Round[Sqrt[x^3]]^2 - x^3, {x, 0, 100}]  (* Artur Jasinski, Nov 30 2011 *)
  • Python
    from math import isqrt
    def A077119(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2-k # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then -A077116(n) else A070929(n).

A253181 Numbers n such that the distance between n^3 and the nearest square is less than n.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 25, 32, 35, 36, 37, 40, 43, 46, 49, 52, 56, 63, 64, 65, 81, 99, 100, 101, 109, 121, 136, 143, 144, 145, 152, 158, 169, 175, 190, 195, 196, 197, 225, 243, 255, 256, 257, 289, 312, 317, 323, 324, 325, 331, 336, 351, 356, 361, 366, 377
Offset: 1

Views

Author

Alex Ratushnyak, Mar 23 2015

Keywords

Comments

Distance can be zero, that is, cubes that are squares are included.
Numbers n such that A002938(n) < n.

Examples

			The distance between 5^3=125 and the nearest square 11^2=121 is less than 5, so 5 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    dnsQ[n_]:=Module[{n3=n^3,sr},sr=Sqrt[n3];Min[n3-Floor[sr]^2, Ceiling[ sr]^2- n3]Harvey P. Dale, Dec 23 2015 *)
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr + b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    for n in range(1000):
        cube = n*n*n
        r = isqrt(cube)
        sqr = r**2
        if cube-sqr < n or sqr+2*r+1-cube < n:  print(str(n), end=',')

A073072 Minimum value of abs(n^2-x^3) x>0.

Original entry on oeis.org

0, 3, 1, 8, 2, 9, 15, 0, 17, 25, 4, 19, 44, 20, 9, 40, 54, 19, 18, 57, 71, 28, 17, 64, 104, 53, 0, 55, 112, 100, 39, 24, 89, 156, 106, 35, 38, 113, 190, 128, 47, 36, 121, 208, 172, 81, 12, 107, 204, 244, 143, 40, 65, 172, 281, 239, 126, 11, 106, 225, 346, 252, 127, 0, 129
Offset: 1

Views

Author

Benoit Cloitre, Aug 17 2002

Keywords

Crossrefs

Cf. A002938.

Programs

  • Mathematica
    Table[Min[n^2-Floor[(n^2)^(1/3)]^3,(Floor[(n^2)^(1/3)]+1)^3-n^2],{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
  • PARI
    a(n)=vecmin(vector(ceil(n^(2/3)),i,abs(n^2-i^3)))

Formula

a(n^3) = 0.
a(n) = abs(A077111(n)). - R. J. Mathar, May 01 2008
Showing 1-3 of 3 results.