cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A077108 Duplicate of A075847.

Original entry on oeis.org

0, 0, 3, 1, 8, 17, 9, 22, 0, 17, 36, 57, 19, 44, 71, 9, 40, 73, 108, 18, 57, 98, 141, 17, 64
Offset: 0

Views

Author

Keywords

A077116 n^3 - A065733(n).

Original entry on oeis.org

0, 0, 4, 2, 0, 4, 20, 19, 28, 0, 39, 35, 47, 81, 40, 11, 0, 13, 56, 135, 79, 45, 39, 67, 135, 0, 152, 83, 48, 53, 104, 207, 7, 216, 100, 26, 0, 28, 116, 270, 496, 277, 104, 546, 503, 524, 615, 139, 368, 0, 391, 155, 732, 652, 648, 726, 55, 293, 631, 170, 704
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) = 0 for n = m^2. - Zak Seidov, May 11 2007
It has been asked whether some primes do not occur in this sequence. It seems indeed that primes 3, 5, 17, 23, 29, 31, 37, 41, 43, 59, 61,... do not occur, primes 2, 7, 11, 13, 19, 47, 53, 67, 79, 83,... do. For further investigations, see A087285 = the range of this sequence, and also the related sequences A229618 = range of A181138, and A165288. - M. F. Hasler, Sep 26 2013 and Oct 05 2013

Examples

			A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000 - 961 = 39.
		

Crossrefs

Programs

Formula

a(n) = A154333(n) unless n is a square or, equivalently, a(n)=0. - M. F. Hasler, Oct 05 2013
a(n) = A053186(n^3). - R. J. Mathar, Jul 12 2016

A070923 a(n) is the smallest value >= 0 of the form x^3 - n^2.

Original entry on oeis.org

0, 0, 4, 18, 11, 2, 28, 15, 0, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 0, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11, 615, 496
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n) = 0 if n is a cube (i.e., n is in A000578(k)).
a(n) = A181138(n) if n is not a cube. - Zak Seidov, Mar 26 2013

Crossrefs

Formula

a(n) = ceiling(n^(2/3))^3 - n^2 = A077107(n)-n^2.

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 07 2022

A077110 Nearest integer cube to n^2.

Original entry on oeis.org

0, 1, 1, 8, 8, 27, 27, 64, 64, 64, 125, 125, 125, 125, 216, 216, 216, 343, 343, 343, 343, 512, 512, 512, 512, 729, 729, 729, 729, 729, 1000, 1000, 1000, 1000, 1000, 1331, 1331, 1331, 1331, 1331, 1728, 1728, 1728, 1728, 1728, 2197, 2197, 2197
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(10) = 125, as 125 = 5^3 is the nearest cube to 100 = 10^2.
		

Crossrefs

Cf. A002760 (Squares and cubes). - Zak Seidov, Oct 08 2015

Programs

  • Mathematica
    nic[n_]:=Module[{n2=n^2,s3,c1,c2},s3=Surd[n2,3];c1=Floor[s3]^3;c2= Ceiling[ s3]^3;If[n2-c1Harvey P. Dale, Jul 05 2015 *)
  • Python
    from sympy import integer_nthroot
    def A077110(n):
        n2 = n**2
        a = integer_nthroot(n2,3)[0]
        a2, a3 = a**3, (a+1)**3
        return a3 if a3+a2-2*n2 < 0 else a2 # Chai Wah Wu, Sep 24 2021

Formula

a(n) = if A075847(n) < A070923(n) then A077106(n) else A077107(n).

A077106 Largest integer cube <= n^2.

Original entry on oeis.org

0, 1, 1, 8, 8, 8, 27, 27, 64, 64, 64, 64, 125, 125, 125, 216, 216, 216, 216, 343, 343, 343, 343, 512, 512, 512, 512, 729, 729, 729, 729, 729, 1000, 1000, 1000, 1000, 1000, 1331, 1331, 1331, 1331, 1331, 1728, 1728, 1728, 1728, 1728, 2197, 2197
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(20) = 343, as 343 = 7^3 is the largest cube <= 400 = 20^2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[Surd[n^2, 3]]^3; Array[a, 100, 0] (* Amiram Eldar, Apr 05 2025 *)

Formula

a(n) + A075847(n) = n^2.
a(n) = A100196(n)^3. - Amiram Eldar, Apr 06 2025

A077111 a(n) = A077110(n) - n^2.

Original entry on oeis.org

0, 0, -3, -1, -8, 2, -9, 15, 0, -17, 25, 4, -19, -44, 20, -9, -40, 54, 19, -18, -57, 71, 28, -17, -64, 104, 53, 0, -55, -112, 100, 39, -24, -89, -156, 106, 35, -38, -113, -190, 128, 47, -36, -121, -208, 172, 81, -12, -107, -204, 244, 143, 40, -65, -172
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).

Examples

			A077110(20)=343=7^3 is the nearest cube to 20^2=400, therefore a(20)=343-400=-57.
		

Crossrefs

Formula

a(n) = if A075847(n) < A070923(n) then -A075847(n) else A070923(n).

A176582 n^2+Largest cube, (Largest cube <= n^2).

Original entry on oeis.org

0, 2, 5, 17, 24, 33, 63, 76, 128, 145, 164, 185, 269, 294, 321, 441, 472, 505, 540, 704, 743, 784, 827, 1041, 1088, 1137, 1188, 1458, 1513, 1570, 1629, 1690, 2024, 2089, 2156, 2225, 2296, 2700, 2775, 2852, 2931, 3012, 3492, 3577, 3664, 3753, 3844, 4406
Offset: 1

Views

Author

Keywords

Comments

9+8=17, 16+8=24, 25+8=33, 36+27=63,..

Crossrefs

Programs

  • Mathematica
    r[n_]:=n^2;f[n_]:=r[n]+Floor[r[n]^(1/3)]^3;Table[f[n],{n,0,5!}]

A176583 n^2+Smallest cube, (Smallest cube >= n^2).

Original entry on oeis.org

0, 2, 12, 36, 43, 52, 100, 113, 128, 206, 225, 246, 360, 385, 412, 568, 599, 632, 667, 873, 912, 953, 996, 1258, 1305, 1354, 1405, 1458, 1784, 1841, 1900, 1961, 2355, 2420, 2487, 2556, 2627, 3097, 3172, 3249, 3328, 3409, 3961, 4046, 4133, 4222, 4313, 4953
Offset: 1

Views

Author

Keywords

Comments

4+8=12, 9+27=36, 16+27=43,..

Crossrefs

Programs

  • Mathematica
    r[n_]:=n^2;f[n_]:=r[n]+Ceiling[r[n]^(1/3)]^3;Table[f[n],{n,0,5!}]
    Table[n^2+Ceiling[Surd[n^2,3]]^3,{n,0,50}] (* Harvey P. Dale, Jun 04 2016 *)

A176584 Primes of the form p = k^3 + (largest square <= k^3).

Original entry on oeis.org

2, 194057, 601067, 1607173, 3283993, 3630257, 3721363, 4918999, 5255713, 5848307, 6749569, 9999907, 17992913, 20432729, 23393483, 34746203, 44845993, 73843813, 84277273, 107165033, 109735649, 120469409, 125138873, 130898927
Offset: 1

Views

Author

Keywords

Comments

Consider k = 4 * x^2 + 1, where the largest square <= k^3 is (8 * x^3 + 3 * x)^2. Bunyakowsky's conjecture implies there are infinitely many primes of the form (4 * x^2 + 1)^3 + (8 * x^3 + 3 * x)^2, and so that the sequence is infinite. The first term of this form is 93389778901 = a(165), corresponding to x = 30. - Robert Israel, Jan 10 2024

Crossrefs

Programs

  • Maple
    g:= n -> n + floor(sqrt(n))^2:
    select(isprime,map(g,[seq(i^3,i=1..1000)])); # Robert Israel, Jan 10 2024
  • Mathematica
    r[n_]:=n^3;f[n_]:=r[n]+Floor[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,6!}],PrimeQ[ # ]&]
  • PARI
    select(isprime, vector(1000, n, n^3+sqrtint(n^3)^2)) \\ Michel Marcus, Jan 10 2024

A176585 Primes of the form n^3+Smallest square, (Smallest square >= n^3).

Original entry on oeis.org

2, 17, 269, 281233, 1770217, 1826609, 2520841, 3907529, 7595017, 8665471, 9828089, 11280377, 12259063, 17235221, 27654961, 54008809, 70583033, 75196799, 85018949, 87240233, 106316057, 111499057, 168061561, 176255669, 201105409
Offset: 1

Views

Author

Keywords

Comments

8+9=17, 5^3+12^2=269,..

Crossrefs

Programs

  • Mathematica
    r[n_]:=n^3;f[n_]:=r[n]+Ceiling[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,6!}],PrimeQ[ # ]&]
    ssn3[n_]:=n^3+(Ceiling[Sqrt[n^3]])^2; Select[Array[ssn3,500],PrimeQ] (* Harvey P. Dale, Jun 23 2017 *)
Showing 1-10 of 11 results. Next