A077108 Duplicate of A075847.
0, 0, 3, 1, 8, 17, 9, 22, 0, 17, 36, 57, 19, 44, 71, 9, 40, 73, 108, 18, 57, 98, 141, 17, 64
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A065733(10) = 961 = 31^2 is the largest square less than or equal to 10^3 = 1000, therefore a(10) = 1000 - 961 = 39.
A077116 := proc(n) A053186(n^3) ; end proc: # R. J. Mathar, Jul 12 2016
Table[c = n^3; c - Floor[Sqrt[c]]^2, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 02 2011 *)
A077116(n)=n^3-sqrtint(n^3)^2 \\ - M. F. Hasler, Sep 26 2013
a(10) = 125, as 125 = 5^3 is the nearest cube to 100 = 10^2.
nic[n_]:=Module[{n2=n^2,s3,c1,c2},s3=Surd[n2,3];c1=Floor[s3]^3;c2= Ceiling[ s3]^3;If[n2-c1Harvey P. Dale, Jul 05 2015 *)
from sympy import integer_nthroot def A077110(n): n2 = n**2 a = integer_nthroot(n2,3)[0] a2, a3 = a**3, (a+1)**3 return a3 if a3+a2-2*n2 < 0 else a2 # Chai Wah Wu, Sep 24 2021
a(20) = 343, as 343 = 7^3 is the largest cube <= 400 = 20^2.
a[n_] := Floor[Surd[n^2, 3]]^3; Array[a, 100, 0] (* Amiram Eldar, Apr 05 2025 *)
A077110(20)=343=7^3 is the nearest cube to 20^2=400, therefore a(20)=343-400=-57.
r[n_]:=n^2;f[n_]:=r[n]+Floor[r[n]^(1/3)]^3;Table[f[n],{n,0,5!}]
r[n_]:=n^2;f[n_]:=r[n]+Ceiling[r[n]^(1/3)]^3;Table[f[n],{n,0,5!}] Table[n^2+Ceiling[Surd[n^2,3]]^3,{n,0,50}] (* Harvey P. Dale, Jun 04 2016 *)
g:= n -> n + floor(sqrt(n))^2: select(isprime,map(g,[seq(i^3,i=1..1000)])); # Robert Israel, Jan 10 2024
r[n_]:=n^3;f[n_]:=r[n]+Floor[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,6!}],PrimeQ[ # ]&]
select(isprime, vector(1000, n, n^3+sqrtint(n^3)^2)) \\ Michel Marcus, Jan 10 2024
r[n_]:=n^3;f[n_]:=r[n]+Ceiling[Sqrt[r[n]]]^2;Select[Table[f[n],{n,0,6!}],PrimeQ[ # ]&] ssn3[n_]:=n^3+(Ceiling[Sqrt[n^3]])^2; Select[Array[ssn3,500],PrimeQ] (* Harvey P. Dale, Jun 23 2017 *)
Comments