cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181162 Number of commuting functions: the number of ordered pairs (f,g) of functions from {1..n} to itself such that fg=gf (i.e., f(g(i))=g(f(i)) for all i).

Original entry on oeis.org

1, 1, 10, 141, 2824, 71565, 2244096, 83982199, 3681265792, 186047433225, 10716241342240, 697053065658411, 50827694884298784, 4129325095108122637, 371782656333674104624, 36918345387693628911375, 4025196918605160943576576, 479796375191949916361466897
Offset: 0

Views

Author

Jeffrey Norden, Oct 07 2010

Keywords

Comments

Also, the total number of endomorphisms of all directed graphs on n labeled vertices with outdegree of each vertex equal 1. - Max Alekseyev, Jan 09 2015
Seems to be relatively hard to compute for large n. (a(n)-n^n)/2 is always an integer, since it gives the number of unordered pairs of distinct commuting functions.
a(n) is divisible by n as proved by Holloway and Shattuck (2015).
From Joerg Arndt, Jul 21 2014: (Start)
Multiply fg=gf from the right by f to obtain fgf=gff, and use f(gf)=f(fg)=ffg to see ffg=gff; iterate to see f^k g = g f^k for all k>=1; by symmetry g^k f = f g^k holds as well.
More generally, if X and Y are words of length w over the alphabet {f,g}, then X = Y (as functional composition) whenever both words contain j symbols f and k symbols g (and j+k=w). (End)
Functions with the same mapping pattern have the same number of commuting functions, so there is no need to check every pair. - Martin Fuller, Feb 01 2015

Examples

			The a(2) = 10 pairs of maps [2] -> [2] are:
01:  [ 1 1 ]  [ 1 1 ]
02:  [ 1 1 ]  [ 1 2 ]
03:  [ 1 2 ]  [ 1 1 ]
04:  [ 1 2 ]  [ 1 2 ]
05:  [ 1 2 ]  [ 2 1 ]
06:  [ 1 2 ]  [ 2 2 ]
07:  [ 2 1 ]  [ 1 2 ]
08:  [ 2 1 ]  [ 2 1 ]
09:  [ 2 2 ]  [ 1 2 ]
10:  [ 2 2 ]  [ 2 2 ]
- _Joerg Arndt_, Jul 22 2014
		

Crossrefs

A053529 is a similar count for permutations. A254529 is for permutations commuting with functions.

Programs

  • Mathematica
    (* This brute force code allows to get a few terms *)
    a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]]&; g = T[[k, #]] &; Table[True, {n}] == Table[f[g[i]] == g[f[i]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True]&]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 24 2022 *)

Extensions

a(11)-a(20) from Martin Fuller, Feb 01 2015