Original entry on oeis.org
1, 5, 47, 706, 14313, 374016, 11997457, 460158224, 20671937025, 1071624134224, 63368460514401, 4235641240358232, 317640391931394049, 26555904023833864616, 2461223025846241927425, 251574807412822558973536, 28223316187761759785968641, 3459174110134084070825015328, 461154818319652703166752585377, 66589665425419376047897811260040
Offset: 1
A053529
a(n) = n! * number of partitions of n.
Original entry on oeis.org
1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, PU.M.A, Volume 24 (2013), Issue No. 1.
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, Research Gate, 2015.
- R. P. Stanley, Pairs with equal squares, Problem 10654, Amer. Math. Monthly, 107 (April 2000), solution p. 368.
- Wikipedia, Young tableau
-
a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
-
seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006
with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
-
Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
-
N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
-
a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
-
from math import factorial
from sympy import npartitions
def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023
A239773
Number of pairs of functions f, g from a size n set into itself satisfying f(g(f(x))) = f(f(f(x))).
Original entry on oeis.org
1, 1, 10, 231, 9880, 644845, 58790736, 7077540295, 1081801600384, 203836779804537, 46268684631596800
Offset: 0
-
s:= proc(n, i) option remember; `if`(i=0, [[]],
map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
end:
a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
f[g[f[i]]]=f[f[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
end:
seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014
-
a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]] &; g = T[[k, #]] &; Table[True, {n}] == Table[f[g[f[i]]] == f[f[f[i]]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True] &]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 24 2022 *)
A239769
Number of pairs of functions (f, g) from a size n set into itself satisfying f(g(f(x))) = g(g(f(x))).
Original entry on oeis.org
1, 1, 10, 195, 7000, 397445, 32540976, 3612881587, 520731462784
Offset: 0
-
s:= proc(n, i) option remember; `if`(i=0, [[]],
map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
end:
a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
f[g[f[i]]]=g[g[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
end:
seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014
-
a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]]&; g = T[[k, #]]&; Table[True, {n}] == Table[f[g[f[i]]] == g[g[f[i]]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True]&]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 22 2022 *)
A235328
Number of ordered pairs of endofunctions (f,g) on a set of n elements satisfying f(x) = g(f(f(x))).
Original entry on oeis.org
1, 1, 6, 69, 1336, 39145, 1598256, 85996561, 5872177536, 494848403793, 50333180780800, 6068500612311841, 854434117410352128, 138752719761249646585, 25714777079368557164544, 5389541081414619785888625, 1267387594395443339970052096, 332074775201035547446532113825
Offset: 0
-
a:= proc(n) option remember; local b; b:=
proc(m, i) option remember; `if`(m=0, n^i, `if`(i<1, 0,
add(b(m-j, i-1)*binomial(m, j)*j, j=0..m)))
end: forget(b):
b(n$2)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2014
-
a[n_] := If[n==0, 1, Sum[k! Binomial[n, k] (n k)^(n - k), {k, 1, n}]]
Table[a[n],{n,20}] (* David Einstein, Oct 10 2016 *)
A239749
Number of ordered pairs of functions f,g on a set of n elements into itself satisfying f(f(x)) = g(f(g(x))).
Original entry on oeis.org
1, 1, 6, 87, 2056, 69605, 3201696, 190933435
Offset: 0
a(0) = a(1) = 1 since there is only one endofunction for n=0 or 1 and the equation is satisfied trivially. For n=2, each endofunction f on {1,2} is represented by [f(1),f(2)]. The list of a(2) = 6 pairs (f,g) which satisfy the equation is ([1,1], [1,1]), ([1,1], [1,2]), ([1,2], [1,2]), ([1,2], [2,1]), ([2,2], [1,2]), ([2,2], [2,2]). - _Michael Somos_, Mar 26 2014
A239761
Number of pairs of functions (f, g) on a set of n elements into itself satisfying f(g(x)) = f(x).
Original entry on oeis.org
1, 1, 10, 159, 3496, 98345, 3373056, 136535455, 6371523712, 336784920849, 19888195110400, 1297716672601151, 92721494240225280, 7199830049013964921, 603715489091812335616, 54366622743565012989375, 5233114241479255004839936, 536180296483497244155041825
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)*j^j, j=0..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 17 2014
-
f4[n_] := Sum[n^k Sum[Binomial[n - 1, j]*n^(n - 1 - j)*StirlingS1[j + 1, k] *(-1)^(j + k + 1), {j, 0, n - 1}], {k, 1, n}] (* David Einstein, Oct 31 2016 *)
A239771
Number of pairs of functions (f,g) from a size n set into itself satisfying f(x) = g(g(f(x))).
Original entry on oeis.org
1, 1, 10, 213, 8056, 465945, 37823616, 4075467781, 560230714240, 95369455852497, 19643693349548800, 4805295720474420501, 1374890520609054683136, 454286686896040037996905, 171479277693049020232695808, 73262491601904459123264721125, 35143072854722729593790081499136
Offset: 0
-
g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
a:= n-> add(binomial(n, k)*Stirling2(n, k)*k!*
add(binomial(n-k, i)*binomial(k, i)*i!*
g(k-i)*n^(n-k-i), i=0..min(k, n-k)), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 18 2014
-
g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
a[n_] := If[n == 0, 1, Sum[Binomial[n, k]*StirlingS2[n, k]*k!*Sum[ Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]} ], {k, 0, n}]];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)
A239785
Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(g(x))) = f(g(x)).
Original entry on oeis.org
1, 1, 14, 411, 19912, 1412745, 136537056, 17121680443
Offset: 0
A362819
Number of ordered pairs of involutions on [n] that commute.
Original entry on oeis.org
1, 1, 4, 10, 52, 196, 1216, 5944, 42400, 250912, 2008576, 13815616, 122074624, 950640640, 9158267392, 79258479616, 824644235776, 7823203807744, 87245790791680, 897748312609792, 10665239974537216, 118040852776093696, 1486172381689544704, 17572063073426206720, 233446797379437248512
Offset: 0
A053529 is the corresponding sequence for all permutations.
-
b(n,f) = {sum(k=0, n\2, f(k)*binomial(n,2*k)*(2*k)!/(k!*2^k))}
a(n) = {b(n, k->b(n-2*k, j->1)*b(k, j->2^(k-j)))}
-
seq(n)=Vec(serlaplace(exp(x + 3*x^2/2 + x^4/4 + O(x*x^n))))
Showing 1-10 of 35 results.
Comments