cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A254530 a(n) = A181162(n) / n, n>=1.

Original entry on oeis.org

1, 5, 47, 706, 14313, 374016, 11997457, 460158224, 20671937025, 1071624134224, 63368460514401, 4235641240358232, 317640391931394049, 26555904023833864616, 2461223025846241927425, 251574807412822558973536, 28223316187761759785968641, 3459174110134084070825015328, 461154818319652703166752585377, 66589665425419376047897811260040
Offset: 1

Views

Author

Joerg Arndt, Feb 01 2015

Keywords

Crossrefs

Cf. A181162.

A053529 a(n) = n! * number of partitions of n.

Original entry on oeis.org

1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

Comments

Commuting permutations: number of ordered pairs (g, h) in Sym(n) such that gh = hg.
Equivalently sum of the order of all normalizers of all cyclic subgroups of Sym(n). - Olivier Gérard, Apr 04 2012
From Gus Wiseman, Jan 16 2019: (Start)
Also the number of Young tableaux with distinct entries from 1 to n, where a Young tableau is an array obtained by replacing the dots in the Ferrers diagram of an integer partition of n with positive integers. For example, the a(3) = 18 tableaux are:
123 213 132 312 231 321
.
12 21 13 31 23 32
3 3 2 2 1 1
.
1 2 1 3 2 3
2 1 3 1 3 2
3 3 2 2 1 1
(End)

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.

Crossrefs

Column k=2 of A362827.
Sequences counting pairs of functions from an n-set to itself: A053529, A181162, A239749-A239785, A239836-A239841.

Programs

  • Magma
    a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
    
  • Maple
    seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006
    with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
  • Mathematica
    Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
    
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
    
  • PARI
    a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
    
  • Python
    from math import factorial
    from sympy import npartitions
    def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023

Formula

E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n)). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016

A239773 Number of pairs of functions f, g from a size n set into itself satisfying f(g(f(x))) = f(f(f(x))).

Original entry on oeis.org

1, 1, 10, 231, 9880, 644845, 58790736, 7077540295, 1081801600384, 203836779804537, 46268684631596800
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[g[f[i]]]=f[f[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]] &; g = T[[k, #]] &; Table[True, {n}] == Table[f[g[f[i]]] == f[f[f[i]]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True] &]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 24 2022 *)

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(10) from Max Alekseyev, Dec 19 2024

A239769 Number of pairs of functions (f, g) from a size n set into itself satisfying f(g(f(x))) = g(g(f(x))).

Original entry on oeis.org

1, 1, 10, 195, 7000, 397445, 32540976, 3612881587, 520731462784
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[g[f[i]]]=g[g[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Module[{f, g, T}, T = Tuples[Range[n], n]; Table[f = T[[j, #]]&; g = T[[k, #]]&; Table[True, {n}] == Table[f[g[f[i]]] == g[g[f[i]]], {i, n}], {j, n^n}, {k, n^n}] // Flatten // Count[#, True]&]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Sep 22 2022 *)

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8) from Max Alekseyev, Dec 20 2024

A235328 Number of ordered pairs of endofunctions (f,g) on a set of n elements satisfying f(x) = g(f(f(x))).

Original entry on oeis.org

1, 1, 6, 69, 1336, 39145, 1598256, 85996561, 5872177536, 494848403793, 50333180780800, 6068500612311841, 854434117410352128, 138752719761249646585, 25714777079368557164544, 5389541081414619785888625, 1267387594395443339970052096, 332074775201035547446532113825
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Comments

This also counts pairs (f,g) satisfying f(x) = g(f^{r}(x)) for r > 1. - David Einstein, Nov 18 2016

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(m, i) option remember; `if`(m=0, n^i, `if`(i<1, 0,
            add(b(m-j, i-1)*binomial(m, j)*j, j=0..m)))
          end: forget(b):
          b(n$2)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2014
  • Mathematica
    a[n_] := If[n==0, 1, Sum[k! Binomial[n, k] (n k)^(n - k), {k, 1, n}]]
      Table[a[n],{n,20}] (* David Einstein, Oct 10 2016 *)

Formula

a(n) = Sum_{k=1..n} k! * C(n, k) * (n*k)^(n-k). - David Einstein, Oct 10 2016
a(n) = n! * [x^n] 1/(1 - x*exp(n*x)). - Ilya Gutkovskiy, Nov 26 2017
log(a(n)) ~ log(sqrt(2*Pi) * n^(2*n - n/LambertW(exp(1)*n) + 1/2) / (LambertW(exp(1)*n) * exp(n/LambertW(exp(1)*n)) * (LambertW(exp(1)*n) - 1)^(n*(1 - 1/LambertW(exp(1)*n))))). - Vaclav Kotesovec, Feb 20 2022
More precise asymptotics: a(n) ~ sqrt(2*Pi) * (w^2 - w - 1 + 2/w) * exp(n*(1/w^3 - 1/w)) * n^(2*n + n/w^3 - n/w + 1/2) * (w^2 - 1)^(n*(1 + 1/w^3 - 1/w)) * (1 - w^2 + w^3)^(n/w - n - n/w^3 - 1), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Feb 23 2022

Extensions

a(6)-a(7) from Giovanni Resta, Mar 26 2014
a(8)-a(17) from Alois P. Heinz, Jul 23 2014

A239749 Number of ordered pairs of functions f,g on a set of n elements into itself satisfying f(f(x)) = g(f(g(x))).

Original entry on oeis.org

1, 1, 6, 87, 2056, 69605, 3201696, 190933435
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Examples

			a(0) = a(1) = 1 since there is only one endofunction for n=0 or 1 and the equation is satisfied trivially. For n=2, each endofunction f on {1,2} is represented by [f(1),f(2)]. The list of a(2) = 6 pairs (f,g) which satisfy the equation is ([1,1], [1,1]), ([1,1], [1,2]), ([1,2], [1,2]), ([1,2], [2,1]), ([2,2], [1,2]), ([2,2], [2,2]). - _Michael Somos_, Mar 26 2014
		

Crossrefs

Extensions

a(6)-a(7) from Giovanni Resta, Mar 26 2014

A239761 Number of pairs of functions (f, g) on a set of n elements into itself satisfying f(g(x)) = f(x).

Original entry on oeis.org

1, 1, 10, 159, 3496, 98345, 3373056, 136535455, 6371523712, 336784920849, 19888195110400, 1297716672601151, 92721494240225280, 7199830049013964921, 603715489091812335616, 54366622743565012989375, 5233114241479255004839936, 536180296483497244155041825
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Column k=1 of A245910.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-j, i-1)*binomial(n, j)*j^j, j=0..n)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 17 2014
  • Mathematica
    f4[n_] := Sum[n^k Sum[Binomial[n - 1, j]*n^(n - 1 - j)*StirlingS1[j + 1, k] *(-1)^(j + k + 1), {j, 0, n - 1}], {k, 1, n}] (* David Einstein, Oct 31 2016 *)

Formula

a(n) ~ 5^(-1/4) * ((1+sqrt(5))/2)^(3*n-1/2) * n^n / exp(2*n/(1+sqrt(5))). - Vaclav Kotesovec, Aug 07 2014
a(n) = Sum_{k = 1..n} A060281(n,k) n^k. - David Einstein, Oct 31 2016
a(n) = n! * [x^n] 1/(1 + LambertW(-x))^n. - Ilya Gutkovskiy, Oct 03 2017

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(17) from Alois P. Heinz, Jul 17 2014

A239771 Number of pairs of functions (f,g) from a size n set into itself satisfying f(x) = g(g(f(x))).

Original entry on oeis.org

1, 1, 10, 213, 8056, 465945, 37823616, 4075467781, 560230714240, 95369455852497, 19643693349548800, 4805295720474420501, 1374890520609054683136, 454286686896040037996905, 171479277693049020232695808, 73262491601904459123264721125, 35143072854722729593790081499136
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    a:= n-> add(binomial(n, k)*Stirling2(n, k)*k!*
            add(binomial(n-k, i)*binomial(k, i)*i!*
            g(k-i)*n^(n-k-i), i=0..min(k, n-k)), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 18 2014
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
    a[n_] := If[n == 0, 1, Sum[Binomial[n, k]*StirlingS2[n, k]*k!*Sum[ Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]} ], {k, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245348(n,k). - Alois P. Heinz, Jul 18 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Jul 18 2014

A239785 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(g(x))) = f(g(x)).

Original entry on oeis.org

1, 1, 14, 411, 19912, 1412745, 136537056, 17121680443
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A362819 Number of ordered pairs of involutions on [n] that commute.

Original entry on oeis.org

1, 1, 4, 10, 52, 196, 1216, 5944, 42400, 250912, 2008576, 13815616, 122074624, 950640640, 9158267392, 79258479616, 824644235776, 7823203807744, 87245790791680, 897748312609792, 10665239974537216, 118040852776093696, 1486172381689544704, 17572063073426206720, 233446797379437248512
Offset: 0

Views

Author

Andrew Howroyd, May 05 2023

Keywords

Comments

Two involutions x,y on [n] commute if x*y = y*x (i.e. x(y(i)) = y(x(i)) for i in [n]).

Crossrefs

Column k=2 of A362824.
A053529 is the corresponding sequence for all permutations.

Programs

  • PARI
    b(n,f) = {sum(k=0, n\2, f(k)*binomial(n,2*k)*(2*k)!/(k!*2^k))}
    a(n) = {b(n, k->b(n-2*k, j->1)*b(k, j->2^(k-j)))}
    
  • PARI
    seq(n)=Vec(serlaplace(exp(x + 3*x^2/2 + x^4/4 + O(x*x^n))))

Formula

a(n) = Sum_{k=0..floor(n/2)} A000085(n-2*k) * A000898(k) * binomial(n,2*k) * (2*k)! / (k!*2^k).
E.g.f.: exp(x + 3*x^2/2 + x^4/4).
Showing 1-10 of 35 results. Next