A336950
E.g.f.: 1 / (1 - x * exp(2*x)).
Original entry on oeis.org
1, 1, 6, 42, 392, 4600, 64752, 1063216, 19952256, 421227648, 9880951040, 254960721664, 7176891675648, 218857588139008, 7187394935347200, 252897556424140800, 9491754142468702208, 378509920569294684160, 15982018774576565649408, 712306819507400060502016
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(2 (n - k))^k/k!, {k, 0, n}], {n, 1, 19}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(2*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A336951
E.g.f.: 1 / (1 - x * exp(3*x)).
Original entry on oeis.org
1, 1, 8, 69, 780, 11145, 191178, 3823785, 87406056, 2247785073, 64228084110, 2018771719569, 69221032558956, 2571290056399545, 102860527370221026, 4408690840306136505, 201557641172689004112, 9790792086366911655009, 503570143277542340304534
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(3 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 3^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(3*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A336952
E.g.f.: 1 / (1 - x * exp(4*x)).
Original entry on oeis.org
1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A351790
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 6, 21, 24, 1, 1, 8, 42, 148, 120, 1, 1, 10, 69, 392, 1305, 720, 1, 1, 12, 102, 780, 4600, 13806, 5040, 1, 1, 14, 141, 1336, 11145, 64752, 170401, 40320, 1, 1, 16, 186, 2084, 22200, 191178, 1063216, 2403640, 362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, ...
6, 21, 42, 69, 102, 141, ...
24, 148, 392, 780, 1336, 2084, ...
120, 1305, 4600, 11145, 22200, 39145, ...
-
T[n_, k_] := n!*(1 + Sum[(k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, k^(n-1-j)*binomial(n-1, j)*T(j, k)));
A336949
a(n) = n! * [x^n] 1 / (exp(-n*x) - x).
Original entry on oeis.org
1, 2, 14, 195, 4440, 147745, 6698448, 394852577, 29250137472, 2652483234033, 288363456748800, 36952298766628465, 5504130616452258816, 941845623036360908489, 183298110723156455921664, 40221612394630225987208625, 9876429434585097671993032704
Offset: 0
-
Table[n! SeriesCoefficient[1/(Exp[-n x] - x), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[n! Sum[(n (n - k + 1))^k/k!, {k, 0, n}], {n, 1, 16}]]
-
a(n)={n!*polcoef(1/(exp(-n*x + O(x*x^n)) - x), n)} \\ Andrew Howroyd, Aug 08 2020
A351795
a(n) = n! * Sum_{k=0..n} (k * (n-k))^k/k!.
Original entry on oeis.org
1, 1, 4, 30, 396, 8360, 256470, 10619952, 564959528, 37370475648, 3001942868490, 287388158562560, 32278318416029532, 4197544986996581376, 625014083479647028622, 105554855135062180485120, 20053957030647088382195280, 4255329207190209023134564352
Offset: 0
-
a[n_] := n!*(1 + Sum[(k*(n - k))^k/k!, {k, 1, n}]); Array[a, 18, 0] (* Amiram Eldar, Feb 19 2022 *)
-
a(n) = n!*sum(k=0, n, (k*(n-k))^k/k!);
A302398
a(n) = n! * [x^n] 1/(1 + x*exp(n*x)).
Original entry on oeis.org
1, -1, -2, 3, 248, 5655, 62064, -3516625, -376936064, -21890186577, -495165203200, 96687112380639, 20607024735783936, 2471270260977141767, 142697263160045590528, -25986252776953159328625, -11860424645318274482077696, -2719428501410438623907546529, -372732332273232481973818294272
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + x Exp[n x]), {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! Sum[(-1)^(n - k) (n (n - k))^k/k!, {k, 0, n}], {n, 18}]]
Join[{1}, Table[Sum[(-1)^k k! (n k)^(n - k) Binomial[n, k], {k, 0, n}], {n, 18}]]
Showing 1-7 of 7 results.