cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A336950 E.g.f.: 1 / (1 - x * exp(2*x)).

Original entry on oeis.org

1, 1, 6, 42, 392, 4600, 64752, 1063216, 19952256, 421227648, 9880951040, 254960721664, 7176891675648, 218857588139008, 7187394935347200, 252897556424140800, 9491754142468702208, 378509920569294684160, 15982018774576565649408, 712306819507400060502016
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(2 (n - k))^k/k!, {k, 0, n}], {n, 1, 19}]]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (1 - x*exp(2*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (2 * (n-k))^k / k!.
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k * 2^(k-1) * a(n-k).
a(n) ~ n! * (2/LambertW(2))^n / (1 + LambertW(2)). - Vaclav Kotesovec, Aug 09 2021

A336951 E.g.f.: 1 / (1 - x * exp(3*x)).

Original entry on oeis.org

1, 1, 8, 69, 780, 11145, 191178, 3823785, 87406056, 2247785073, 64228084110, 2018771719569, 69221032558956, 2571290056399545, 102860527370221026, 4408690840306136505, 201557641172689004112, 9790792086366911655009, 503570143277542340304534
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - x Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(3 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 3^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (1 - x*exp(3*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (3 * (n-k))^k / k!.
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k * 3^(k-1) * a(n-k).
a(n) ~ n! * (3/LambertW(3))^n / (1 + LambertW(3)). - Vaclav Kotesovec, Aug 09 2021

A336952 E.g.f.: 1 / (1 - x * exp(4*x)).

Original entry on oeis.org

1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (4 * (n-k))^k / k!.
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k * 4^(k-1) * a(n-k).
a(n) ~ n! * (4/LambertW(4))^n / (1 + LambertW(4)). - Vaclav Kotesovec, Aug 09 2021

A351790 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (k * (n-j))^j/j!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 6, 21, 24, 1, 1, 8, 42, 148, 120, 1, 1, 10, 69, 392, 1305, 720, 1, 1, 12, 102, 780, 4600, 13806, 5040, 1, 1, 14, 141, 1336, 11145, 64752, 170401, 40320, 1, 1, 16, 186, 2084, 22200, 191178, 1063216, 2403640, 362880
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2022

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1, ...
    1,    1,    1,     1,     1,     1, ...
    2,    4,    6,     8,    10,    12, ...
    6,   21,   42,    69,   102,   141, ...
   24,  148,  392,   780,  1336,  2084, ...
  120, 1305, 4600, 11145, 22200, 39145, ...
		

Crossrefs

Columns k=0..4 give A000142, A006153, A336950, A336951, A336952.
Main diagonal gives A235328.

Programs

  • Mathematica
    T[n_, k_] := n!*(1 + Sum[(k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
  • PARI
    T(n, k) = n!*sum(j=0, n, (k*(n-j))^j/j!);
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n-1, k^(n-1-j)*binomial(n-1, j)*T(j, k)));

Formula

E.g.f. of column k: 1/(1 - x*exp(k*x)).
T(0,k) = 1 and T(n,k) = n * Sum_{j=0..n-1} k^(n-1-j) * binomial(n-1,j) * T(j,k) for n > 0.

A336949 a(n) = n! * [x^n] 1 / (exp(-n*x) - x).

Original entry on oeis.org

1, 2, 14, 195, 4440, 147745, 6698448, 394852577, 29250137472, 2652483234033, 288363456748800, 36952298766628465, 5504130616452258816, 941845623036360908489, 183298110723156455921664, 40221612394630225987208625, 9876429434585097671993032704
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(Exp[-n x] - x), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n! Sum[(n (n - k + 1))^k/k!, {k, 0, n}], {n, 1, 16}]]
  • PARI
    a(n)={n!*polcoef(1/(exp(-n*x + O(x*x^n)) - x), n)} \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (n * (n-k+1))^k / k!.

A351795 a(n) = n! * Sum_{k=0..n} (k * (n-k))^k/k!.

Original entry on oeis.org

1, 1, 4, 30, 396, 8360, 256470, 10619952, 564959528, 37370475648, 3001942868490, 287388158562560, 32278318416029532, 4197544986996581376, 625014083479647028622, 105554855135062180485120, 20053957030647088382195280, 4255329207190209023134564352
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n!*(1 + Sum[(k*(n - k))^k/k!, {k, 1, n}]); Array[a, 18, 0] (* Amiram Eldar, Feb 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, (k*(n-k))^k/k!);

Formula

a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / (sqrt(LambertW(exp(2)*n)^2 - 1) * exp(n*(1 - 1/LambertW(exp(2)*n))) * LambertW(exp(2)*n)^n). - Vaclav Kotesovec, Feb 20 2022

A302398 a(n) = n! * [x^n] 1/(1 + x*exp(n*x)).

Original entry on oeis.org

1, -1, -2, 3, 248, 5655, 62064, -3516625, -376936064, -21890186577, -495165203200, 96687112380639, 20607024735783936, 2471270260977141767, 142697263160045590528, -25986252776953159328625, -11860424645318274482077696, -2719428501410438623907546529, -372732332273232481973818294272
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + x Exp[n x]), {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[n! Sum[(-1)^(n - k) (n (n - k))^k/k!, {k, 0, n}], {n, 18}]]
    Join[{1}, Table[Sum[(-1)^k k! (n k)^(n - k) Binomial[n, k], {k, 0, n}], {n, 18}]]

Formula

a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n*(n-k))^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*(n*k)^(n-k)*binomial(n,k).
Showing 1-7 of 7 results.