A181170 Number of connected 9-regular simple graphs on 2n vertices with girth at least 4.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 14
Offset: 0
Examples
The a(0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth. The a(9)=1 graph is the complete bipartite graph K_{9,9} with 18 vertices. The a(10)=1 graph has girth 4, automorphism group of order 7257600, and the following adjacency lists: 01 : 02 03 04 05 06 07 08 09 10 02 : 01 11 12 13 14 15 16 17 18 03 : 01 11 12 13 14 15 16 17 19 04 : 01 11 12 13 14 15 16 18 19 05 : 01 11 12 13 14 15 17 18 19 06 : 01 11 12 13 14 16 17 18 19 07 : 01 11 12 13 15 16 17 18 19 08 : 01 11 12 14 15 16 17 18 19 09 : 01 11 13 14 15 16 17 18 19 10 : 01 12 13 14 15 16 17 18 19 11 : 02 03 04 05 06 07 08 09 20 12 : 02 03 04 05 06 07 08 10 20 13 : 02 03 04 05 06 07 09 10 20 14 : 02 03 04 05 06 08 09 10 20 15 : 02 03 04 05 07 08 09 10 20 16 : 02 03 04 06 07 08 09 10 20 17 : 02 03 05 06 07 08 09 10 20 18 : 02 04 05 06 07 08 09 10 20 19 : 03 04 05 06 07 08 09 10 20 20 : 11 12 13 14 15 16 17 18 19
Links
- Jason Kimberley, Connected regular graphs with girth at least 4
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.
Crossrefs
9-regular simple graphs with girth at least 4: this sequence (connected), A185294 (disconnected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), this sequence (k=9).
Connected 9-regular simple graphs with girth at least g: A014378 (g=3), this sequence (g=4).
Connected 9-regular simple graphs with girth exactly g: A184993 (g=3).
Comments