cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.

Original entry on oeis.org

2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
		

Crossrefs

Main diagonal of A181212.
Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

Term a(14) from Vaclav Kotesovec, Dec 06 2011
Term a(15) from Vaclav Kotesovec, Jan 03 2012
Term a(16) from Vaclav Kotesovec, May 01 2012
Term a(17)-a(18) from Vaclav Kotesovec, Aug 13 2016

A181207 Number of n X 3 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

8, 25, 119, 484, 2117, 9025, 38936, 167281, 720083, 3097600, 13329209, 57350329, 246768392, 1061782225, 4568619071, 19657722436, 84582794333, 363940725625, 1565955363224, 6737954403049, 28991906279867, 124745667481600
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 3 of A181212.

Crossrefs

Cf. A181212.

Formula

Empirical: a(n) = 5*a(n-1) - 15*a(n-3) + 9*a(n-4).
Empirical g.f.: x*(8 - 15*x - 6*x^2 + 9*x^3) / ((1 - 5*x + 3*x^2)*(1 - 3*x^2)). - Colin Barker, Mar 26 2018

A181208 Number of n X 4 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

16, 64, 484, 2704, 17424, 104976, 652864, 4000000, 24681024, 151782400, 934891776, 5754132736, 35428274176, 218096472064, 1342706197504, 8266039005184, 50888705511424, 313286601609216, 1928696564957184, 11873676328960000
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 4 of A181212.

Crossrefs

Cf. A181212.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=6*a(n-1)+8*a(n-2)-48*a(n-3)+24*a(n-4)+32*a(n-5)-16*a(n-6), a(1)=16, a(2)=64, a(3)=484, a(4)=2704, a(5)=17424, a(6)=104976},a(n),remember):
    map(f, [$1..20]); # Robert Israel, Dec 25 2017
  • Mathematica
    RecurrenceTable[{a[n] == 6*a[n-1] + 8*a[n-2] - 48*a[n-3] + 24*a[n-4] + 32*a[n-5] - 16*a[n-6], a[1] == 16, a[2] == 64, a[3] == 484, a[4] == 2704, a[5] == 17424, a[6] == 104976}, a, {n, 1, 20}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *)
    LinearRecurrence[{6,8,-48,24,32,-16},{16,64,484,2704,17424,104976},30] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    Vec(4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)) + O(x^30)) \\ Colin Barker, Mar 26 2018

Formula

Empirical: a(n) = 6*a(n-1) + 8*a(n-2) - 48*a(n-3) + 24*a(n-4) + 32*a(n-5) - 16*a(n-6).
Formula confirmed by Robert Israel, Dec 25 2017 (see link).
G.f.: 4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)). - Colin Barker, Mar 26 2018

A181209 Number of n X 5 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

32, 169, 2117, 17424, 177073, 1630729, 15786848, 149352841, 1429585373, 13610488896, 129934154497, 1238878076401, 11819811992192, 112736763711049, 1075437390934037, 10258292274099984, 97854335246290033, 933422273708422969
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 5 of A181212.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=12*a(n-1)-283*a(n-3)+516*a(n-4)+600*a(n-5)-1415*a(n-6)+600*a(n-8)-125*a(n-9),a(1) = 32, a(2) = 169, a(3) = 2117, a(4) = 17424, a(5) = 177073, a(6) = 1630729, a(7) = 15786848, a(8) = 149352841,a(9)=1429585373},a(n),remember):
    map(f, [$1..30]); # Robert Israel, Dec 25 2017
  • Mathematica
    RecurrenceTable[{a[n] == 12*a[n - 1] - 283*a[n - 3] + 516*a[n - 4] + 600*a[n - 5] - 1415*a[n - 6] + 600*a[n - 8] - 125*a[n - 9], a[1] == 32, a[2] == 169, a[3] == 2117, a[4] == 17424, a[5] == 177073, a[6] == 1630729, a[7] == 15786848, a[8] == 149352841, a[9] == 1429585373}, a, {n, 1, 30}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *)

Formula

Empirical: a(n) = 12*a(n-1) - 283*a(n-3) + 516*a(n-4) + 600*a(n-5) - 1415*a(n-6) + 600*a(n-8) - 125*a(n-9).
Formula verified by Robert Israel, Dec 25 2017 (see link).

A181210 Number of nX6 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

64, 441, 9025, 104976, 1630729, 21836929, 315701824, 4388400025, 62249751001, 873880953856, 12333757683025, 173597094140625, 2446840043215936, 34462915406893801, 485580777431805169, 6840488501157755536
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 6 of A181212

Formula

Empirical: a(n)=15*a(n-1)+52*a(n-2)-1045*a(n-3)+803*a(n-4)+17330*a(n-5)-30225*a(n-6)-98253*a(n-7)+228176*a(n-8)+160607*a(n-9)-559589*a(n-10)+6282*a(n-11)+499824*a(n-12)-154008*a(n-13)-117936*a(n-14)+46656*a(n-15)

A181211 Number of nX7 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

128, 1156, 38936, 652864, 15786848, 315701824, 6985036032, 146719641600, 3168621039616, 67463750631424, 1447364588320768, 30930859081810944, 662387735874816000, 14169961476541661184, 303300655391773020160
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 7 of A181212

Formula

Empirical: a(n)=30*a(n-1)-5664*a(n-3)+28924*a(n-4)+269000*a(n-5)-2020704*a(n-6)-3766112*a(n-7)+50266144*a(n-8)-14668480*a(n-9)-554895616*a(n-10)+703166720*a(n-11)+2841716480*a(n-12)-5523241472*a(n-13)-6148366336*a(n-14)+18197354496*a(n-15)+2156556288*a(n-16)-26980270080*a(n-17)+8757542912*a(n-18)+17095786496*a(n-19)-9858056192*a(n-20)-3497000960*a(n-21)+3006267392*a(n-22)-260046848*a(n-24)+33554432*a(n-25)
Showing 1-6 of 6 results.