cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181342 a(n) = (35*n^4 - 105*n^3 + 160*n^2 - 120*n + 36)/6.

Original entry on oeis.org

1, 26, 186, 726, 2031, 4626, 9176, 16486, 27501, 43306, 65126, 94326, 132411, 181026, 241956, 317126, 408601, 518586, 649426, 803606, 983751, 1192626, 1433136, 1708326, 2021381, 2375626, 2774526, 3221686, 3720851, 4275906
Offset: 1

Views

Author

Klaus Brockhaus, Oct 14 2010

Keywords

Comments

First bisection of A175898.

Crossrefs

Programs

  • Magma
    [ (35*n^4-105*n^3+160*n^2-120*n+36)/6: n in [1..30] ];
    
  • Mathematica
    Table[(35n^4-105n^3+160n^2-120n+36)/6,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,26,186,726,2031},30] (* Harvey P. Dale, Feb 19 2017 *)
  • PARI
    a(n)=(35*n^4-105*n^3+160*n^2-120*n+36)/6 \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 140 for n > 4; a(1)=1, a(2)=26, a(3)=186, a(4)=726.
G.f.: (1 + 21*x + 66*x^2 + 46*x^3 + 6*x^4)/(1-x)^5.
a(-n+1) = A181343(n). - Bruno Berselli, Aug 23 2011