cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A181354 Number of n-digit perfect cubes.

Original entry on oeis.org

2, 2, 5, 12, 25, 53, 116, 249, 535, 1155, 2487, 5358, 11545, 24871, 53584, 115444, 248715, 535841, 1154435, 2487154, 5358411, 11544347, 24871542, 53584111, 115443470, 248715414, 535841116, 1154434691, 2487154143, 5358411166
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

a(n) is also the total number of n-digit numbers requiring 1 positive cube in their representation as sum of cubes.
a(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
Differs from A062941 only at n=1, because 0 is considered a 0-digit, not a 1-digit number here. - R. J. Mathar, Jul 09 2011

Crossrefs

Programs

  • Maple
    a:=n->ceil(10^(n/3))-ceil(10^((n-1)/3));
  • Mathematica
    With[{c = Range[4650000]^3}, Length[#]&/@Table[Select[c, IntegerLength[#] == n &], {n, 20}]] (* Harvey P. Dale, Feb 01 2011 *)
    Differences[Ceiling[10^(Range[0, 30]/3)]]

Formula

a(n) = A061439(n) - A061439(n-1).

Extensions

More terms from T. D. Noe, Feb 01 2011

A171386 The characteristic function of 2 and 3: 1 if n is prime such that either n-1 or n+1 is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + a(n) = A052268(n).

Crossrefs

Programs

Formula

a(n) = A130130(n) - A130130(n-1), for n>0.

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A181376 Total number of n-digit numbers requiring 2 positive cubes in their representation as a sum of cubes.

Original entry on oeis.org

2, 7, 32, 161, 736, 3416, 15976, 74295, 345334, 1605089, 7455698, 34623338, 160759047, 746318897, 3464508951, 16081935250, 74648713406
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + a(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Examples

			a(1) = 2 from 1+1=2, 1+8=9.
a(2) = 7 from 8+8=16, 1+27=28, 35, 54, 65, 72, 91.
		

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    Table[Length[c = Table[j^3, {j, (10^n - 1)^(1/3)}];
      Select[Union[Flatten[Outer[Plus, c, c]]],
    IntervalMemberQ[Interval[{10^(n - 1), 10^n - 1}], #] &]], {n, 10}] (* Robert Price, Apr 18 2019 *)
  • PARI
    a(n)=my(N=10^n, Nn=N/10, v=List(), x3, t); sum(x=sqrtnint(Nn\2,3), sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), t=x3+y^3; t>=Nn && !ispower(t, 3) && listput(v, t))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013

Formula

a(n) = A181375(n)-A181375(n-1).

Extensions

a(6)-a(11) from Charles R Greathouse IV, Oct 16 2013
a(12) from Lars Blomberg, Jan 15 2014
a(13)-a(17) from Hiroaki Yamanouchi, Jul 13 2014

A181378 Total number of n-digit numbers requiring 3 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 14, 107, 1006, 9550, 92743, 913905, 9060358, 90216532
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + a(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181377(n)-A181377(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181380 Total number of n-digit numbers requiring 4 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 17, 224, 3101, 43340, 558806, 6615757, 73663693, 784419159
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + a(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Formula

a(n) = A181379(n) - A181379(n-1).

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181384 Total number of n-digit numbers requiring 5 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 20, 272, 3549, 34234, 244503, 1454243, 7201405, 25018440
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + a(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181381(n)-A181381(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181403 Total number of n-digit numbers requiring 7 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 9, 63, 48
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + a(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Cf. A018890.

Formula

a(n) = A181402(n) - A181402(n-1).

A181405 Total number of n-digit numbers requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Arthur Wieferich proved that only 15 integers require eight cubes, cf. A018889.
A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + a(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181404(n) - A181404(n-1).
Showing 1-8 of 8 results.