A181407 a(n) = (n-4)*(n-3)*2^(n-2).
3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
GAP
List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
-
Magma
[(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
-
Mathematica
Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
-
PARI
vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
-
Sage
[(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
Formula
a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019
Comments