cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181442 Expansion of (1 + x - 8*x^2 + x^3 + x^4) / ( (1 - x)*(1 - 10*x^2 + x^4) ).

Original entry on oeis.org

1, 2, 4, 15, 35, 144, 342, 1421, 3381, 14062, 33464, 139195, 331255, 1377884, 3279082, 13639641, 32459561, 135018522, 321316524, 1336545575, 3180705675, 13230437224, 31485740222, 130967826661, 311676696541, 1296447829382, 3085281225184, 12833510467155
Offset: 0

Views

Author

Paul Weisenhorn, Jan 29 2011

Keywords

Comments

Previous name was: Solutions a(n) to (r(n)-2)*(r(n)-3) = 6*a(n)*(a(n)-1), where r(n) = A180483(n).
A combinatorial interpretation is provided in A180483.

Examples

			For n=3: a(3)=15; b(3)=38; binomial(38,4) = 73815 = binomial(38,2)*binomial(15,2).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x-8*x^2+x^3+x^4)/((1-x)*(1-10*x^2+x^4)) )); // G. C. Greubel, Apr 26 2022
    
  • Maple
    n:=0: for s from 1 to 100 do r:=(sqrt(24*s^2-24*s+1)+5)/2: if (floor(r)=r) then a[n]:=s: b[n]:=r: n:=n+1: end if: end do:
  • Mathematica
    LinearRecurrence[{1,10,-10,-1,1},{1,2,4,15,35},30] (* Harvey P. Dale, Dec 22 2012 *)
  • SageMath
    def b(n): return ((1+(-1)^n)/2)*chebyshev_U(n//2, 5)
    def A181442(n): return (b(n) + 3*b(n-1) - 3*b(n-2) - b(n-3) + 1)/2
    [A181442(n) for n in (0..50)] # G. C. Greubel, Apr 26 2022

Formula

G.f.: (1+x-8*x^2+x^3+x^4) / ( (1-x)*(1-10*x^2+x^4) ). - R. J. Mathar, Feb 05 2011
Explicit formulas: r=sqrt(6), s=5+2*r, t=5-2*r.
a(2*n) = (12 + (6 + r)*s^n + (6 - r)*t^n)/24.
a(2*n+1) = (12 + (18 + 7*r)*s^n + (18 - 7*r)*t^n)/24.
a(n) = 11*a(n-2) - 11*a(n-4) + a(n-6).
a(n) = +a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5).
a(n) = (b(n) + 3*b(n-1) - 3*b(n-2) - b(n-3) + 1)/2, where b(n) = ((1+(-1)^n)/2)* ChebyshevU(n/2, 5). - G. C. Greubel, Apr 26 2022

Extensions

New name using g.f. by R. J. Mathar from Joerg Arndt, Apr 27 2022