A180483 Expansion of (3+3*x-25*x^2-3*x^3+2*x^4)/((1-x)*(1-10*x^2+x^4)).
3, 6, 11, 38, 87, 354, 839, 3482, 8283, 34446, 81971, 340958, 811407, 3375114, 8032079, 33410162, 79509363, 330726486, 787061531, 3273854678, 7791105927, 32407820274, 77123997719, 320804348042, 763448871243, 3175635660126, 7557364714691, 31435552253198
Offset: 0
Examples
For n=3: a(3) = 38; b(3) = 15; binomial(38,4) = 73815 and binomial(38, 2)*binomial(15, 2) = 73815. The 2-tuples begin (3, 1); (6, 2); (11, 4); (38, 15).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1)
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+3*x-25*x^2-3*x^3+2*x^4)/((1-x)*(1-10*x^2+x^4)) )); // G. C. Greubel, Apr 28 2022 -
Maple
n:=0: for s from 1 to 100 do r:=(sqrt(24*s^2-24*s+1)+5)/2: if (r=trunc(r)) then a(n):=r: b(n):=s: n:=n+1: end if: end do:
-
Mathematica
LinearRecurrence[{1,10,-10,-1,1},{3,6,11,38,87},30] (* Harvey P. Dale, Apr 28 2018 *)
-
SageMath
def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5) def A180483(n): return (1/2)*(5 +b(n) +7*b(n-1) +7*b(n-2) +b(n-3)) [A180483(n) for n in (0..40)] # G. C. Greubel, Apr 28 2022
Formula
G.f.: ( 3+3*x-25*x^2-3*x^3+2*x^4 )/( (1-x)*(1-10*x^2+x^4) ). - R. J. Mathar, Feb 05 2011
Let r=sqrt(6), s=5+2*r, and t=5-2*r, then a(2*n) = (10+(1+r)*s^n+(1-r)*t^n)/4 and a(2*n+1) = (10+(7+3*r)*s^n+(7-3*r)*t^n)/4.
a(n) = 11*a(n-2) - 11*a(n-4) + a(n-6).
a(n) = +a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5). - R. J. Mathar, Feb 05 2011
a(n) = (1/2)*(5 +b(n) +7*b(n-1) +7*b(n-2) +b(n-3)), where b(n) = (1/2)*(1+(-1)^n)*ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022
Extensions
New name using the g.f. by R. J. Mathar from Joerg Arndt, Apr 27 2022
Comments