A181457 Numbers k such that 37 is the largest prime factor of k^2 - 1.
36, 38, 73, 75, 149, 186, 221, 223, 260, 295, 369, 371, 406, 443, 482, 519, 593, 628, 776, 813, 815, 961, 1000, 1072, 1259, 1331, 1333, 1405, 1407, 1444, 1481, 1701, 1814, 1849, 1886, 1923, 1999, 2071, 2367, 2591, 2663, 2737, 2887, 2959, 3329, 3331, 3403
Offset: 1
Links
- Artur Jasinski, Table of n, a(n) for n = 1..208
Programs
-
Magma
[ n: n in [2..300000] | m eq 37 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
-
Magma
p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 37 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
-
Mathematica
jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 37, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *) Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==37&]
-
PARI
is(n)=n=n^2-1; forprime(p=2, 31, n/=p^valuation(n, p)); n>1 && 37^valuation(n, 37)==n \\ Charles R Greathouse IV, Jul 01 2013
Comments