cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181459 Numbers k such that 43 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

42, 44, 85, 87, 171, 173, 216, 257, 259, 300, 343, 386, 431, 474, 517, 560, 601, 687, 689, 730, 818, 859, 1074, 1117, 1119, 1289, 1291, 1332, 1420, 1549, 1633, 1721, 1805, 1891, 1977, 1979, 2108, 2321, 2495, 2665, 2667, 2751, 2753, 2794, 2925, 3095, 3484
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 43.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(14) = 842277599279; primepi(43) = 14.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 43 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 43 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 43, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==43&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 41, n/=p^valuation(n, p)); n>1 && 43^valuation(n, 43)==n \\ Charles R Greathouse IV, Jul 01 2013