cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181470 Numbers n such that 97 is the largest prime factor of n^2 - 1.

Original entry on oeis.org

96, 98, 193, 195, 290, 389, 484, 581, 583, 775, 872, 874, 969, 971, 1066, 1163, 1165, 1359, 1456, 1551, 1553, 1648, 1747, 1844, 1939, 2036, 2133, 2135, 2232, 2521, 2715, 2911, 3008, 3103, 3299, 3394, 3396, 3590, 3976, 4267, 4269, 4463, 4558, 4946, 5045
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(25) = 99913980938200001; primepi(97) = 25.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 97 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 97 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Mathematica
    jj = 2^36 * 3^23 * 5^15 * 7^13 * 11^10 * 13^9 * 17^8 * 19^8 * 23^8 * 29^7 * 31^7 * 37^7*41^6 * 43^6 * 47^6 * 53^6 * 59^6 * 61^6 * 67^6 * 71^5 * 73^5 * 79^5 * 83^5 * 89^5 * 97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 97, AppendTo[rr, n]]]; n++]; rr
    (* or *)
    Select[Range[300000], FactorInteger[#^2 - 1][[-1, 1]] == 97 &]
  • PARI
    is(n)=n=n^2-1;forprime(p=2,89,n/=p^valuation(n,p));n>1 && 97^valuation(n,97)==n \\ Charles R Greathouse IV, Jul 01 2013