A181527 Binomial transform of A113127; (1, 1, 3, 7, 15, 31, ...) convolved with (1, 3, 7, 15, 31, 63, ...).
1, 4, 13, 38, 103, 264, 649, 1546, 3595, 8204, 18445, 40974, 90127, 196624, 426001, 917522, 1966099, 4194324, 8912917, 18874390, 39845911, 83886104, 176160793, 369098778, 771751963, 1610612764, 3355443229, 6979321886, 14495514655, 30064771104, 62277025825
Offset: 0
Examples
a(4) = 103 = (1, 1, 3, 7, 15) dot (31, 15, 7, 3, 1) = (31 + 15 + 21, + 21 + 15) a(3) = 38 = (1, 3, 3, 1) dot (1, 3, 6, 10) = (1 + 9 + 18 + 10).
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Mathematica
Accumulate[Table[n*2^n + 1, {n, 0, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jul 09 2011 *) LinearRecurrence[{6,-13,12,-4},{1,4,13,38},40] (* Harvey P. Dale, Apr 14 2016 *)
Formula
Binomial transform of A113127; (1, 3, 7, 15, 31, ...) convolved with (1, 1, 3, 7, 15, 31, ...).
From R. J. Mathar, Oct 30 2010: (Start)
a(n) = 3+ n + 2^(n+1)*(n-1) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: ( 1-2*x+2*x^2 ) / ( (2*x-1)^2*(x-1)^2 ). (End)
Comments