A181546 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)^4.
1, 1, 2, 17, 83, 338, 1923, 11553, 63028, 359203, 2172469, 13026034, 78106885, 478415635, 2957675956, 18321372721, 114301292581, 718253640196, 4531427831111, 28699590926291, 182566373639352, 1165539703613397
Offset: 0
Keywords
Examples
G.f. A(x) = 1 + x + 2*x^2 + 17*x^3 + 83*x^4 + 338*x^5 + 1923*x^6 +... The terms begin: a(0) = a(1) = 1^4; a(2) = 1^4 + 1^4 = 2; a(3) = 1^4 + 2^4 = 17; a(4) = 1^4 + 3^4 + 1^4 = 83; a(5) = 1^4 + 4^4 + 3^4 = 338; a(6) = 1^4 + 5^4 + 6^4 + 1^4 = 1923; a(7) = 1^4 + 6^4 + 10^4 + 4^4 = 11553; ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1202
- C. Banderier, P. Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Disc. Appl. Math. 160 (18) (2012) 2542-2554. Table 1.
Programs
-
Mathematica
Table[Sum[Binomial[n-k,k]^4,{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, May 22 2021 *)
-
PARI
{a(n)=sum(k=0,n\2,binomial(n-k,k)^4)}
Comments