A181595 Abundant numbers n for which the abundance d = sigma(n) - 2*n is a proper divisor, that is, 0 < d < n and d | n.
12, 18, 20, 24, 40, 56, 88, 104, 196, 224, 234, 368, 464, 650, 992, 1504, 1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, 15872, 16256, 17816, 24448, 28544, 30592, 32128, 77744, 98048, 122624, 128768, 130304, 174592, 396896, 507392, 521728, 522752, 537248
Offset: 1
Keywords
Examples
The abundance of 12 is A033880(12) = 4, which is a proper divisor of 12, so 12 is in the sequence.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..200
- Hùng Việt Chu, Divisibility of Divisor Functions of Even Perfect Numbers, J. Int. Seq., Vol. 24 (2021), Article 21.3.4.
- Yanbin Li and Qunying Liao, A class of new near-perfect numbers, J. Korean Math. Soc. 52 (2015), No. 4, pp. 751-763.
- Paul Pollack and Vladimir Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), pp. 3037-3046. arXiv preprint, arXiv:1011.6160 [math.NT], 2010-2012.
- X.-Z. Ren, Y.-G. Chen, On near-perfect numbers with two distinct prime factors, Bulletin of the Australian Mathematical Society, No 3 (2013), available on CJO2013. doi:10.1017/S0004972713000178.
- M. Tang, X. Z. Ren and M. Li, On near-perfect and deficient-perfect numbers, Colloq. Math. 133 (2013), 221-226.
Programs
-
Maple
q:= n-> (t-> t>0 and t
Alois P. Heinz, May 11 2023 -
Mathematica
Select[Range[550000], 0 < (d = DivisorSigma[1, #] - 2*#) < # && Divisible[#, d] &] (* Amiram Eldar, May 12 2023 *)
-
PARI
is_A181595(n)=my(d=sigma(n)-2*n); (d>0) && (d
A181595(n)&&print1(n",")) \\ M. F. Hasler, Apr 14 2012; corrected by Michel Marcus, May 12 2023
Extensions
Definition shortened, entries checked by R. J. Mathar, Nov 17 2010
Comments