A181619 Numbers k such that k^2+1 = 2p,(k+1)^2+1 = 5q, (k+2)^2+1 = 10r where p, q, and r are primes.
11, 51, 61, 101, 221, 261, 571, 2271, 2821, 2871, 5071, 5651, 5761, 6561, 6951, 9751, 10461, 10851, 11621, 11711, 14961, 15911, 16551, 17171, 17601, 18511, 19071, 19551, 23151, 25261, 27351, 27751
Offset: 1
Keywords
Examples
a(2) = 51 because 51^2+1 = 2*1301, 52^2+1 = 5*541, 53^2+1 = 10*281.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):for n from 1 to 30000 do : x:=n^2+1:y:=(n+1)^2+1:z:=(n+2)^2+1:x1:=factorset(x):y1:=factorset(y):z1:=factorset(z):n1:=bigomega(x):n2:=bigomega(y):n3:=bigomega(z):if x1[1]=2 and n1=2 and y1[1]=5 and n2 = 2 and z1[1]=2 and z1[2]=5 and n3=3 then printf(`%d, `, n):else fi:od:
-
Mathematica
ksQ[k_]:=And@@PrimeQ[{(k^2+1)/2,((k+1)^2+1)/5,((k+2)^2+1)/10}]; Select[ Range[30000],ksQ] (* Harvey P. Dale, Sep 01 2013 *)
-
PARI
forstep(k=1,1e5,10,if(isprime(k^2\2+1)&isprime((k+1)^2\5+1)&isprime((k+2)^2\10+1),print1(k", ")))
Comments