cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181619 Numbers k such that k^2+1 = 2p,(k+1)^2+1 = 5q, (k+2)^2+1 = 10r where p, q, and r are primes.

Original entry on oeis.org

11, 51, 61, 101, 221, 261, 571, 2271, 2821, 2871, 5071, 5651, 5761, 6561, 6951, 9751, 10461, 10851, 11621, 11711, 14961, 15911, 16551, 17171, 17601, 18511, 19071, 19551, 23151, 25261, 27351, 27751
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2011

Keywords

Comments

a(n) == 1 (mod 10).

Examples

			a(2) = 51 because 51^2+1 = 2*1301, 52^2+1 = 5*541, 53^2+1 = 10*281.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 30000 do : x:=n^2+1:y:=(n+1)^2+1:z:=(n+2)^2+1:x1:=factorset(x):y1:=factorset(y):z1:=factorset(z):n1:=bigomega(x):n2:=bigomega(y):n3:=bigomega(z):if
      x1[1]=2 and n1=2 and y1[1]=5 and n2 = 2 and z1[1]=2 and z1[2]=5 and n3=3 then
      printf(`%d, `, n):else fi:od:
  • Mathematica
    ksQ[k_]:=And@@PrimeQ[{(k^2+1)/2,((k+1)^2+1)/5,((k+2)^2+1)/10}]; Select[ Range[30000],ksQ] (* Harvey P. Dale, Sep 01 2013 *)
  • PARI
    forstep(k=1,1e5,10,if(isprime(k^2\2+1)&isprime((k+1)^2\5+1)&isprime((k+2)^2\10+1),print1(k", ")))