A181620 Sequence starting with 2 such that the sum of any two distinct terms is a semiprime having two distinct prime factors.
2, 4, 31, 91, 183, 4411, 29611, 59935, 110791, 10418851, 658653031, 20123369491, 518294316451, 947137685251
Offset: 1
Examples
The subset {2, 4, 31} produces the three sums {6, 33, 35} which factor as {2*3, 3*11, 5*7}.
Programs
-
Maple
with(numtheory):nn:=500000:T:=array(1..nn): U:=array(1..nn): for p from 1 to nn do: T[p]:=p+1:U[p]:=2:od:for u from 1 to 10 do: k:=1+u:for n from u+1 to nn do:s:=T[n]+T[u]:s1:=nops(factorset(s)):s2:=bigomega(s):if s1=2 and s2=2 then U[k]:=T[n]:k:=k+1:else fi:od:for i from 1 to nn do:T[i]:=U[i]:od:od:for j from 1 to 30 do:print( T[j]):od:
-
Mathematica
TwoDistinct[n_]:=Module[{p,e}, {p,e}=Transpose[FactorInteger[n]]; Length[p]==2 && e=={1,1}]; t={2}; k=2; Do[While[k++; !And@@TwoDistinct/@(k+t)]; AppendTo[t,k], {6}]; t
Extensions
Removed 84835 and a(10)-a(12) from Donovan Johnson, Feb 14 2011
a(13)-a(14) from Jinyuan Wang, May 29 2025
Comments