A116656
Slowest growing sequence of semiprimes having the semiprime-pairwise-sum property: for any i
4, 6, 51, 115, 511, 5263, 116623, 204091, 823363, 1144363, 78325123, 883337023, 6860264683, 19613836423, 167589841663
Offset: 1
Examples
Triangle of resulting semiprimes begins: 10 55, 57 119, 121, 166 515, 517, 562, 626 5267, 5269, 5314, 5378, 5774 116627, 116629, 116674, 116738, 117134, 121886
Programs
-
Mathematica
spQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; L = {0, 4}; Do[n = L[[-1]] + 1; While[! AllTrue[n + L, spQ], n++]; AppendTo[L, n], {9}]; Rest@ L (* Giovanni Resta, Jun 13 2018 *)
-
PARI
lista(nn) = my(m, r, s, t, u, v=vector(nn=max(2, nn))); print1(v[1]=4, ", ", v[2]=6); for(n=3, nn, m=4; r=List([3]); forprime(p=2, oo, if(m*p>v[n-1], break); u=List([]); forprime(q=2, p-1, s=Set(v%(t=p*q)); for(i=1, #s, listput(u, Mod(t-s[i], t)))); s=List([]); for(i=1, #r, forstep(k=r[i], m*p, m, t=1; for(j=1, #u, if(k==u[j], t=0; break)); if(t, listput(s, k)))); r=s; m*=p); listsort(r); forstep(i=0, oo, m, for(j=1, #r, t=i+r[j]; if(t>v[n-1]&&bigomega(t)==2&&bigomega(t+4)==2&&bigomega(t+6)==2, for(k=3, n-1, if(!isprime((t+v[k])\2), t=0; break)); if(t, print1(", ", v[n]=t); break(2)))))); \\ Jinyuan Wang, May 29 2025
Extensions
a(8)-a(10) from R. J. Mathar, Jan 23 2008
a(11)-a(12) from Donovan Johnson, Nov 11 2008
a(13) from Donovan Johnson, Jul 22 2011
a(14) from Giovanni Resta, Jun 13 2018
a(15) from Giovanni Resta, Jun 14 2018
Comments