cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181628 Numbers k such that (2^k + 3^k)/13 is prime.

Original entry on oeis.org

6, 10, 14, 22, 34, 38, 82, 106, 218, 334, 4414, 7246, 10118, 10942, 15898, 42422, 65986
Offset: 1

Views

Author

Michel Lagneau, Nov 18 2010

Keywords

Comments

All terms are of the form 2p, p prime.
The prime (2^4414 + 3^4414)/13 = 79300327387 ...611266 985181 has 2105 decimal digits.
a(18) > 10^5. - Michael S. Branicky, Aug 17 2024

Examples

			10 is in the sequence because (2^10+ 3^10)/13 = 60073/13 = 4621 is prime.
		

Crossrefs

Cf. A057469.

Programs

  • Maple
    with(numtheory):for n from 1 to 4500 do: x:= (2^n + 3^n)/13:if floor(x)=x and
      type(x,prime)=true then printf(`%d, `, n):else fi:od:
    # alternative
    Res:= NULL:
    p:= 2:
    while p < 6000 do
    p:= nextprime(p);
    if isprime((2^(2*p)+3^(2*p))/13) then Res:= Res, 2*p fi;
    od:
    Res; # Robert Israel, Apr 26 2017
  • PARI
    is(n)=n%2==0 && isprime(n/2) && ispseudoprime((2^n+3^n)/13) \\ Charles R Greathouse IV, Jun 06 2017
    
  • Python
    from sympy import isprime
    def afind(limit, startk=1):
        k = startk
        pow2 = 2**k
        pow3 = 3**k
        for k in range(startk, limit+1):
            q, r = divmod(pow2+pow3, 13)
            if r == 0 and isprime(q):
                print(k, end=", ")
            pow2 *= 2
            pow3 *= 3
    afind(1000) # Michael S. Branicky, Dec 28 2021

Extensions

a(12) from D. S. McNeil, Nov 18 2010
a(13) and a(14) from Robert Israel, Apr 26 2017
a(15) from Michael S. Branicky, Dec 28 2021
a(16) from Michael S. Branicky, Apr 26 2023
a(17) from Michael S. Branicky, Aug 17 2024