A181628 Numbers k such that (2^k + 3^k)/13 is prime.
6, 10, 14, 22, 34, 38, 82, 106, 218, 334, 4414, 7246, 10118, 10942, 15898, 42422, 65986
Offset: 1
Examples
10 is in the sequence because (2^10+ 3^10)/13 = 60073/13 = 4621 is prime.
Crossrefs
Cf. A057469.
Programs
-
Maple
with(numtheory):for n from 1 to 4500 do: x:= (2^n + 3^n)/13:if floor(x)=x and type(x,prime)=true then printf(`%d, `, n):else fi:od: # alternative Res:= NULL: p:= 2: while p < 6000 do p:= nextprime(p); if isprime((2^(2*p)+3^(2*p))/13) then Res:= Res, 2*p fi; od: Res; # Robert Israel, Apr 26 2017
-
PARI
is(n)=n%2==0 && isprime(n/2) && ispseudoprime((2^n+3^n)/13) \\ Charles R Greathouse IV, Jun 06 2017
-
Python
from sympy import isprime def afind(limit, startk=1): k = startk pow2 = 2**k pow3 = 3**k for k in range(startk, limit+1): q, r = divmod(pow2+pow3, 13) if r == 0 and isprime(q): print(k, end=", ") pow2 *= 2 pow3 *= 3 afind(1000) # Michael S. Branicky, Dec 28 2021
Extensions
a(12) from D. S. McNeil, Nov 18 2010
a(13) and a(14) from Robert Israel, Apr 26 2017
a(15) from Michael S. Branicky, Dec 28 2021
a(16) from Michael S. Branicky, Apr 26 2023
a(17) from Michael S. Branicky, Aug 17 2024
Comments