cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181640 Partial sums of floor(n^2/5) (A118015).

Original entry on oeis.org

0, 0, 0, 1, 4, 9, 16, 25, 37, 53, 73, 97, 125, 158, 197, 242, 293, 350, 414, 486, 566, 654, 750, 855, 970, 1095, 1230, 1375, 1531, 1699, 1879, 2071, 2275, 2492, 2723, 2968, 3227, 3500, 3788, 4092, 4412, 4748, 5100, 5469, 5856, 6261, 6684, 7125, 7585, 8065, 8565
Offset: 0

Views

Author

Mircea Merca, Nov 18 2010

Keywords

Examples

			a(5) = 9 = 0 + 0 + 0 + 1 + 3 + 5.
		

Crossrefs

Cf. A118015.

Programs

  • Magma
    [Floor((2*n^3+3*n^2-11*n+6)/30): n in [0..50]]; // Vincenzo Librandi, May 01 2011
  • Maple
    a(n):=round((2*n^(3)+3*n^(2)-11*n-6)/(30))

Formula

a(n) = Sum_{k=0..n} floor(k^2/5).
a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/30).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/30).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/30).
a(n) = a(n-5) + (n-2)^2, n > 4.
From Bruno Berselli, Dec 15 2010: (Start)
G.f.: x^3*(1+x)/((1 + x + x^2 + x^3 + x^4)*(1-x)^4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n > 7. (End)