cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181701 Near-perfect numbers (A181595) of the form 2^(t-1)*(2^t-2^k-1), where 2^t-2^k-1 is prime, k>=1, t>k.

Original entry on oeis.org

12, 20, 56, 88, 104, 368, 464, 992, 1504, 1888, 1952, 16256, 24448, 28544, 30592, 32128, 98048, 122624, 128768, 130304, 507392, 521728, 522752, 2087936, 7337984, 8124416, 8353792, 8378368, 8382464, 25161728, 67100672, 125820928, 132112384, 133685248, 134193152
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

There exist near-perfect numbers of the form 2^r*p, where p is prime, which are not in the sequence (e.g., 24,40,224). For given k, the smallest value of t gives sequence A181692.

Crossrefs

Programs

  • Mathematica
    s = Sort@ Flatten@ Table[p = (2^t - 2^k - 1); If[PrimeQ@ p, 2^(t - 1) p, Nothing], {t, 2, 14}, {k, t - 1}]; Select[Select[s, DivisorSigma[1, #] > 2 # &], MemberQ[Divisors@ #, DivisorSigma[1, #] - 2 #] &] (* Michael De Vlieger, Sep 23 2015, after Alonso del Arte at A181595 *)
  • PARI
    mx=2^269*(2^270-2^122-1); v=vector(1000); n=0; for(k=1, 269, for(t=k+1, 270, p=2^t-2^k-1; m=2^(t-1)*p; if(m>mx, next(2)); if(isprime(p), n++; v[n]=m))); v=vecsort(v); for(n=1, 1000, write("b181701.txt", n " " v[n])) /* Donovan Johnson, May 24 2013 */

Extensions

Edited, corrected, and extended by D. S. McNeil, Nov 18 2010