cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A181702 Numbers of the form 2^r*p with p an odd prime, which are in A181595 but not in A181701.

Original entry on oeis.org

24, 40, 224, 15872, 1040384
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

a(6) > 1.85*10^11, if it exists. - Amiram Eldar, Apr 29 2024

Crossrefs

Extensions

32128 removed by R. J. Mathar, Dec 05 2010
a(5) from Amiram Eldar, Apr 29 2024

A181595 Abundant numbers n for which the abundance d = sigma(n) - 2*n is a proper divisor, that is, 0 < d < n and d | n.

Original entry on oeis.org

12, 18, 20, 24, 40, 56, 88, 104, 196, 224, 234, 368, 464, 650, 992, 1504, 1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, 15872, 16256, 17816, 24448, 28544, 30592, 32128, 77744, 98048, 122624, 128768, 130304, 174592, 396896, 507392, 521728, 522752, 537248
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

Named near-perfect numbers by sequence author.
Union of this sequence and A005820 is A153501.
Every even perfect number n = 2^(p-1)*(2^p-1), p and 2^p-1 prime, of A000396 generates three entries: 2*n, 2^p*n and (2^p-1)*n.
Every number M=2^(t-1)*P, where P is a prime of the form 2^t-2^k-1, is an entry for which (2^k)|M and sigma(M)-2^k=2*M (see A181701).
Conjecture 1: For every k>=1, there exist infinitely many entries m for which (2^k)|m and sigma(m)-2^k = 2*m.
Conjecture 2. All entries are even. [Proved to be false, see below. (Ed.)]
Conjecture 3. If the suitable (according to the definition) divisor d of an entry is not a power of 2, then it is not suitable divisor for any other entry.
Conjecture 4. If a suitable divisor for an even entry is odd, then it is a Mersenne prime (A000043).
If Conjectures 3 and 4 are true, then an entry with odd suitable divisor has the form 2^(p-1)*(2^p-1)^2, where p and 2^p-1 are primes. - Vladimir Shevelev, Nov 08 2010 to Dec 16 2010
The only odd term in this sequence < 2*10^12 is 173369889. - Donovan Johnson, Feb 15 2012
173369889 remains only odd term up to 1.4*10^19. - Peter J. C. Moses, Mar 05 2012
These numbers are obviously pseudoperfect (A005835) since they are equal to the sum of all the proper divisors except the one that is the same as the abundance. - Alonso del Arte, Jul 16 2012

Examples

			The abundance of 12 is A033880(12) = 4, which is a proper divisor of 12, so 12 is in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (t-> t>0 and tAlois P. Heinz, May 11 2023
  • Mathematica
    Select[Range[550000], 0 < (d = DivisorSigma[1, #] - 2*#) < # && Divisible[#, d] &] (* Amiram Eldar, May 12 2023 *)
  • PARI
    is_A181595(n)=my(d=sigma(n)-2*n); (d>0) && (dA181595(n)&&print1(n","))  \\ M. F. Hasler, Apr 14 2012; corrected by Michel Marcus, May 12 2023

Extensions

Definition shortened, entries checked by R. J. Mathar, Nov 17 2010

A181741 Primes of the form 2^t-2^k-1, k>=1.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 29, 31, 47, 59, 61, 127, 191, 223, 239, 251, 383, 479, 503, 509, 991, 1019, 1021, 2039, 3583, 3967, 4079, 4091, 4093, 6143, 8191, 15359, 16127, 16319, 16381, 63487, 65407, 65519, 129023, 131063, 131071, 245759, 253951, 261631, 261887, 262079, 262111, 262127, 262139
Offset: 1

Views

Author

Vladimir Shevelev, Nov 08 2010

Keywords

Comments

All Mersenne primes A000668(i) are in the sequence, parametrized by t=A000043(i)+1 and k=A000043(i).
If p is in the sequence, then the exponents t and k are unique.
For given k, the smallest value of t defines sequence A181692.
Every term p=2^t-2^k-1 in this sequence here generates an entry 2^(t-1)*p in A181595 (cf. A181701).

Crossrefs

Cf. A010051, primes in A081118, see also A208083.

Programs

  • Haskell
    a181741 n = a181741_list !! (n-1)
    a181741_list = filter ((== 1) . a010051) a081118_list
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Maple
    isA000079 := proc(n) if n = 1 then true; elif type(n,'odd') then false; else if nops( numtheory[factorset](n) ) = 1 then  true;  else
    false; end if; end if; end proc:
    isA181741 := proc(p) if isprime(p) then k := A007814(p+1) ; (p+1)/2^k+1 ; return ( isA000079(%) and k >=1 ) ; else
    false;  end if; end proc:
    for i from 1 to 1000 do p := ithprime(i) ; if isA181741(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Nov 18 2010
  • Mathematica
    Select[Table[2^t-2^k-1, {t, 1, 20}, {k, 1, t-1}] // Flatten // Union, PrimeQ] (* Jean-François Alcover, Nov 16 2017 *)
  • PARI
    lista(nn) = {for (n=3, nn, forstep(k=n-1, 1, -1, if (isprime(p=2^n-2^k-1), print1(p, ", "));););} \\ Michel Marcus, Dec 17 2018
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A181741_gen(): # generator of terms
        m = 2
        for t in count(1):
            r=1<>=1
            m<<=1
    A181741_list = list(islice(A181741_gen(),30)) # Chai Wah Wu, Jul 08 2022

Formula

Conjecture: equals the intersection of A000040 and A081118 or the intersection of A000040 and A089633. [R. J. Mathar, Nov 18 2010]

Extensions

Corrected (251 and 1019 inserted) and extended by R. J. Mathar, Nov 18 2010

A181703 Numbers of the form 2^(t-1)*(2^t-3), where 2^t-3 is prime.

Original entry on oeis.org

20, 104, 464, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504, 196159429230833773869868419445529014560349481041922097152, 3450873173395281893717377931138512601610429881249330192849350210617344
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

This is a subsequence of A181595. [Proof: sigma(m) = (2^t-1)*(2^t-2) leads to an abundance of m which is 2.]
Numbers m such that the sum of the even divisors of m equals the square of the odd divisors of m.
Proof: let s0 the sum of the even divisors and s1 the sum of the odd divisors.
s1 = 2^t-2 because 2^t-3 is prime.
s0 = 2 + 4 + 8 + ... + 2^(t-1) + (2^t - 3)(2 + 4 + 8 + ... + 2^(t-1)) = (2^t - 2)^2 => s0 = s1^2. - Michel Lagneau, Apr 17 2013

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 600000 do:x:=divisors(n):n0:=nops(x):s0:=0:s1:=0:for k from 1 to n0 do:if irem(x[k],2)=0 then s0:=s0+ x[k]:else s1:=s1+ x[k]:fi:od:if s0=s1^2 then print(n):else fi:od: # Michel Lagneau, Apr 17 2013
  • PARI
    for(k=1, 200, if(ispseudoprime(2^k-3), print1(2^(k-1)*(2^k-3), ", "))) \\ Eric Chen, Jun 13 2018

Formula

a(n) = 2^(A050414(n)-1) * (2^A050414(n) - 3). - Max Alekseyev, Jul 31 2025

Extensions

Edited and extended by D. S. McNeil, Nov 18 2010
Definition simplified by R. J. Mathar, Nov 18 2010

A181704 Numbers m=2^(t-1)*(2^t-5), where 2^t-5 is prime.

Original entry on oeis.org

12, 88, 1888, 32128, 521728, 8378368, 34359083008, 549753192448, 2251799645913088, 9223372026117357568, 2361183241263023915008, 2596148429267413634121263069790208, 2722258935367507707522529418717050175488
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

All these numbers are in A181595 because their abundance is 4, a proper divisor of m.

Crossrefs

Programs

  • Mathematica
    Rest[2^(#-1) (2^#-5)&/@(Round[N[Log[#+5]/Log[2]]]&/@Select[Table[2^t-5,{t,120}],PrimeQ])] (* Harvey P. Dale, Dec 16 2010 *)

Extensions

571728 replaced with 521728 by R. J. Mathar, Dec 05 2010

A181705 Numbers of the form 2^(t-1)*(2^t-9), where 2^t-9 is prime.

Original entry on oeis.org

56, 368, 128768, 2087936, 8589344768, 2199013818368, 36893488108764397568, 904625697166532776746648320380374279912262923807289020860114158381451706368
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

Subsequence of A181595.
(Proof: Let m=2^(t-1)*(2^t-9) be the entry. By the multiplicative property of the sigma-function, sigma(m)=(2^t-1)*(2^t-8).
The abundance sigma(m)-2*m is therefore 8, and since all t involved are >=4, 8 is a divisor of m because 8 divides 2^(t-1).)

Crossrefs

Programs

  • Mathematica
    2^(#-1) (2^#-9)&/@Select[Range[3,130],PrimeQ[2^#-9]&] (* Harvey P. Dale, Oct 24 2011 *)

Extensions

Edited by R. J. Mathar, Sep 12 2011

A181710 Near-perfect numbers (A181595) of the form m*2^p, where m = 2^(p-1)*(2^p-1) is a perfect number (A000396).

Original entry on oeis.org

24, 224, 15872, 1040384, 274844352512, 1125891316908032, 72057456598974464, 4951760154835678090382802944, 6129982163463555430774932117031404988667342368173719552
Offset: 1

Views

Author

Vladimir Shevelev, Nov 07 2010

Keywords

Crossrefs

Programs

  • Mathematica
    With[{p = MersennePrimeExponent[Range[10]]}, 2^(2*p - 1)*(2^p - 1)] (* Amiram Eldar, Apr 29 2024 *)

Formula

a(n) = A147538(A000043(n)). - Amiram Eldar, Apr 29 2024

Extensions

a(6)-a(9) from Amiram Eldar, Apr 29 2024

A181706 Numbers of the form 2^(t-1)*(2^t-17), where 2^t-17 is prime.

Original entry on oeis.org

1504, 30592, 8353792, 2146926592, 34357510144, 549746900992, 8796057370624, 140737345748992, 9223372000347553792, 2361183240850707054592, 9671406556879650002305024, 154742504910523000781012992
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

All entries are near-perfect numbers (A181595). The proof follows as in A181705, but this time the abundance is 16.

Crossrefs

A181707 Numbers of the form m=2^(t-1)*(2^t-33), where 2^t-33 is prime.

Original entry on oeis.org

992, 28544, 122624, 507392, 34355412992, 8796023816192, 140737211531264, 144115179217485824, 9671406556844465630216192, 162259276829213066154002603835392, 11417981541647679048463794346093005918389141504
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

Generated by t= 6, 8, 9, 10, 18, 22, 24, 29, 42, 54, 77, 90, 102, 137,...
A subsequence of A181595 because the abundance of m is 32, and 32 divides 2^(t-1) and therefore divides m.

Crossrefs

Extensions

Definition simplified and more terms added by R. J. Mathar, Nov 18 2010

A181711 Numbers of the form m*(2^k-1), where m = 2^(k-1)*(2^k-1) is a perfect number (A000396).

Original entry on oeis.org

18, 196, 15376, 1032256, 274810802176, 1125882727038976, 72057319160283136, 4951760152529835082242850816, 6129982163463555428116476125461573244012649752219877376
Offset: 1

Views

Author

Vladimir Shevelev, Nov 07 2010

Keywords

Comments

The associated exponents k are in A000043: 2, 3, 5, 7, 13, 17, 19 ,31, 61, ...
One can prove that, if m = 2^(k-1)*(2^k-1) is a perfect number, then m*2^k and m*(2^k-1) are both in A181595. Thus every even term in A000396 is a difference of two terms in A181595.

Examples

			With k=3, m = 2^(k-1)*(2^k - 1) = 2^2*(8 - 1) = 28 is a perfect number (A000396), so m*(2^k - 1) = 28*7 = 196 is in the sequence. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Formula

If odd perfect numbers do not exist, then a(n) = A181710(n) - A000396(n).
a(n) = A019279(n)*(A000668(n))^2 if there are no odd superperfect numbers. - César Aguilera, Jun 13 2017

Extensions

Definition condensed by R. J. Mathar, Dec 05 2010
Showing 1-10 of 10 results.