A181702 Numbers of the form 2^r*p with p an odd prime, which are in A181595 but not in A181701.
24, 40, 224, 15872, 1040384
Offset: 1
Extensions
32128 removed by R. J. Mathar, Dec 05 2010
a(5) from Amiram Eldar, Apr 29 2024
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The abundance of 12 is A033880(12) = 4, which is a proper divisor of 12, so 12 is in the sequence.
q:= n-> (t-> t>0 and tAlois P. Heinz, May 11 2023
Select[Range[550000], 0 < (d = DivisorSigma[1, #] - 2*#) < # && Divisible[#, d] &] (* Amiram Eldar, May 12 2023 *)
is_A181595(n)=my(d=sigma(n)-2*n); (d>0) && (dA181595(n)&&print1(n",")) \\ M. F. Hasler, Apr 14 2012; corrected by Michel Marcus, May 12 2023
a181741 n = a181741_list !! (n-1) a181741_list = filter ((== 1) . a010051) a081118_list -- Reinhard Zumkeller, Feb 23 2012
isA000079 := proc(n) if n = 1 then true; elif type(n,'odd') then false; else if nops( numtheory[factorset](n) ) = 1 then true; else false; end if; end if; end proc: isA181741 := proc(p) if isprime(p) then k := A007814(p+1) ; (p+1)/2^k+1 ; return ( isA000079(%) and k >=1 ) ; else false; end if; end proc: for i from 1 to 1000 do p := ithprime(i) ; if isA181741(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Nov 18 2010
Select[Table[2^t-2^k-1, {t, 1, 20}, {k, 1, t-1}] // Flatten // Union, PrimeQ] (* Jean-François Alcover, Nov 16 2017 *)
lista(nn) = {for (n=3, nn, forstep(k=n-1, 1, -1, if (isprime(p=2^n-2^k-1), print1(p, ", "));););} \\ Michel Marcus, Dec 17 2018
from itertools import count, islice from sympy import isprime def A181741_gen(): # generator of terms m = 2 for t in count(1): r=1<>=1 m<<=1 A181741_list = list(islice(A181741_gen(),30)) # Chai Wah Wu, Jul 08 2022
with(numtheory):for n from 1 to 600000 do:x:=divisors(n):n0:=nops(x):s0:=0:s1:=0:for k from 1 to n0 do:if irem(x[k],2)=0 then s0:=s0+ x[k]:else s1:=s1+ x[k]:fi:od:if s0=s1^2 then print(n):else fi:od: # Michel Lagneau, Apr 17 2013
for(k=1, 200, if(ispseudoprime(2^k-3), print1(2^(k-1)*(2^k-3), ", "))) \\ Eric Chen, Jun 13 2018
Rest[2^(#-1) (2^#-5)&/@(Round[N[Log[#+5]/Log[2]]]&/@Select[Table[2^t-5,{t,120}],PrimeQ])] (* Harvey P. Dale, Dec 16 2010 *)
2^(#-1) (2^#-9)&/@Select[Range[3,130],PrimeQ[2^#-9]&] (* Harvey P. Dale, Oct 24 2011 *)
With[{p = MersennePrimeExponent[Range[10]]}, 2^(2*p - 1)*(2^p - 1)] (* Amiram Eldar, Apr 29 2024 *)
With k=3, m = 2^(k-1)*(2^k - 1) = 2^2*(8 - 1) = 28 is a perfect number (A000396), so m*(2^k - 1) = 28*7 = 196 is in the sequence. - _Michael B. Porter_, Jul 19 2016
Comments